print("Data Path: ", NEG_DATA_PATH, POS_DATA_PATH) print("Word2Vec Path: ", WORD2VEC_PATH) print("Save Path: ", SAVE_PATH) data_helper = DataHelper(config) #### load the data #### input_texts, target_texts, target_texts_inputs, classes = data_helper.read_txt_sentiment( NEG_DATA_PATH, POS_DATA_PATH) #### tokenize the inputs, outputs #### input_sequences, word2idx_inputs, max_len_input = \ data_helper.create_vocab(input_texts, target_texts, target_texts_inputs) #### load word2vec pretrained model #### word2vec = data_helper.load_word2vec(WORD2VEC_PATH) #### create embedding matrix #### embedding_matrix = data_helper.create_embedding_matrix( word2vec, word2idx_inputs, WORD2VEC_PATH) #### set data of model #### model = ConvModel(config) model.set_data(input_sequences, classes, max_len_input, word2idx_inputs) model.set_embedding_matrix(embedding_matrix) #### build model #### model.build_model() #### train model #### model.train_model() #### save model #### model.save_model(SAVE_PATH)
#### load the data #### input_texts, target_texts, target_texts_inputs = data_helper.read_txt_translation( DATA_PATH) #### tokenize the inputs, outputs #### encoder_inputs, decoder_inputs, decoder_targets, \ word2idx_inputs, word2idx_outputs, \ max_len_input, max_len_target, num_words_output = \ data_helper.create_vocab(input_texts, target_texts, target_texts_inputs) #### load word2vec pretrained model #### word2vec = data_helper.load_word2vec(WORD2VEC_PATH) #### create embedding matrix #### embedding_matrix = data_helper.create_embedding_matrix( word2vec, word2idx_inputs) #### set data of model #### model = Seq2SeqAttnModel(config) model.set_data(encoder_inputs, decoder_inputs, decoder_targets, max_len_input, max_len_target, num_words_output, word2idx_inputs, word2idx_outputs) model.set_embedding_matrix(embedding_matrix) #### build model #### model.build_model() #### train model #### model.train_model() #### save model #### model.save_model(SAVE_PATH)