#resnet50: https://download.pytorch.org/models/resnet50-19c8e357.pth imageNet_pretrain = 'resnet50-19c8e357.pth' train_dataset = imgdataset(dataset_dir=src_dir, txt_path=src_annfile, transformer='train') train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, num_workers=4, drop_last=True) train_dataset_t = imgdataset_camtrans(dataset_dir=tar_dir, txt_path=tar_annfile, transformer='train', num_cam=num_cam, K=K) train_loader_t = DataLoader(dataset=train_dataset_t, batch_size=int(batch_size / K), shuffle=True, num_workers=4, drop_last=True) test_dataset_t = imgdataset(dataset_dir=tar_dir_test, txt_path=tar_annfile_test, transformer='test') test_loader_t = DataLoader(dataset=test_dataset_t, batch_size=4, shuffle=False, num_workers=0)
from utils.evaluate_joint_sim import evaluate_joint os.environ["CUDA_VISIBLE_DEVICES"] = "1" dataset_path = 'data/dataset/' ann_file_train = 'list_market/list_market_train.txt' ann_file_test = 'list_market/list_market_test.txt' snapshot = 'snapshot/resnet50_duke2market_epoch00100.pth' num_cam = 6 ########### DATASET ########### img_dir = dataset_path + 'Market-1501/bounding_box_train_camstyle_merge/' train_dataset = imgdataset_camtrans(dataset_dir=img_dir, txt_path=ann_file_train, transformer='test', K=num_cam, num_cam=num_cam) train_loader = DataLoader(dataset=train_dataset, batch_size=1, shuffle=False, num_workers=4) img_dir = dataset_path + 'Market-1501/' test_dataset = imgdataset(dataset_dir=img_dir, txt_path=ann_file_test, transformer='test') test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False, num_workers=4)