def debug(self, batch, output, iter_id, dataset): opt = self.opt if 'pre_hm' in batch: output.update({'pre_hm': batch['pre_hm']}) dets = generic_decode(output, K=opt.K, opt=opt) for k in dets: dets[k] = dets[k].detach().cpu().numpy() dets_gt = batch['meta']['gt_det'] for i in range(1): debugger = Debugger(opt=opt, dataset=dataset) img = batch['image'][i].detach().cpu().numpy().transpose(1, 2, 0) img = np.clip(((img * dataset.std + dataset.mean) * 255.), 0, 255).astype(np.uint8) pred = debugger.gen_colormap( output['hm'][i].detach().cpu().numpy()) gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hm') debugger.add_blend_img(img, gt, 'gt_hm') if 'pre_img' in batch: pre_img = batch['pre_img'][i].detach().cpu().numpy().transpose( 1, 2, 0) pre_img = np.clip( ((pre_img * dataset.std + dataset.mean) * 255), 0, 255).astype(np.uint8) debugger.add_img(pre_img, 'pre_img_pred') debugger.add_img(pre_img, 'pre_img_gt') if 'pre_hm' in batch: pre_hm = debugger.gen_colormap( batch['pre_hm'][i].detach().cpu().numpy()) debugger.add_blend_img(pre_img, pre_hm, 'pre_hm') debugger.add_img(img, img_id='out_pred') if 'ltrb_amodal' in opt.heads: debugger.add_img(img, img_id='out_pred_amodal') debugger.add_img(img, img_id='out_gt_amodal') # Predictions for k in range(len(dets['scores'][i])): if dets['scores'][i, k] > opt.vis_thresh: debugger.add_coco_bbox(dets['bboxes'][i, k] * opt.down_ratio, dets['clses'][i, k], dets['scores'][i, k], img_id='out_pred') if 'ltrb_amodal' in opt.heads: debugger.add_coco_bbox(dets['bboxes_amodal'][i, k] * opt.down_ratio, dets['clses'][i, k], dets['scores'][i, k], img_id='out_pred_amodal') if 'hps' in opt.heads and int(dets['clses'][i, k]) == 0: debugger.add_coco_hp(dets['hps'][i, k] * opt.down_ratio, img_id='out_pred') if 'tracking' in opt.heads: debugger.add_arrow(dets['cts'][i][k] * opt.down_ratio, dets['tracking'][i][k] * opt.down_ratio, img_id='out_pred') debugger.add_arrow(dets['cts'][i][k] * opt.down_ratio, dets['tracking'][i][k] * opt.down_ratio, img_id='pre_img_pred') # Ground truth debugger.add_img(img, img_id='out_gt') for k in range(len(dets_gt['scores'][i])): if dets_gt['scores'][i][k] > opt.vis_thresh: debugger.add_coco_bbox(dets_gt['bboxes'][i][k] * opt.down_ratio, dets_gt['clses'][i][k], dets_gt['scores'][i][k], img_id='out_gt') if 'ltrb_amodal' in opt.heads: debugger.add_coco_bbox(dets_gt['bboxes_amodal'][i, k] * opt.down_ratio, dets_gt['clses'][i, k], dets_gt['scores'][i, k], img_id='out_gt_amodal') if 'hps' in opt.heads and \ (int(dets['clses'][i, k]) == 0): debugger.add_coco_hp(dets_gt['hps'][i][k] * opt.down_ratio, img_id='out_gt') if 'tracking' in opt.heads: debugger.add_arrow( dets_gt['cts'][i][k] * opt.down_ratio, dets_gt['tracking'][i][k] * opt.down_ratio, img_id='out_gt') debugger.add_arrow( dets_gt['cts'][i][k] * opt.down_ratio, dets_gt['tracking'][i][k] * opt.down_ratio, img_id='pre_img_gt') if 'hm_hp' in opt.heads: pred = debugger.gen_colormap_hp( output['hm_hp'][i].detach().cpu().numpy()) gt = debugger.gen_colormap_hp( batch['hm_hp'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hmhp') debugger.add_blend_img(img, gt, 'gt_hmhp') if 'rot' in opt.heads and 'dim' in opt.heads and 'dep' in opt.heads: dets_gt = {k: dets_gt[k].cpu().numpy() for k in dets_gt} calib = batch['meta']['calib'].detach().numpy() \ if 'calib' in batch['meta'] else None det_pred = generic_post_process( opt, dets, batch['meta']['c'].cpu().numpy(), batch['meta']['s'].cpu().numpy(), output['hm'].shape[2], output['hm'].shape[3], self.opt.num_classes, calib) det_gt = generic_post_process(opt, dets_gt, batch['meta']['c'].cpu().numpy(), batch['meta']['s'].cpu().numpy(), output['hm'].shape[2], output['hm'].shape[3], self.opt.num_classes, calib) debugger.add_3d_detection(batch['meta']['img_path'][i], batch['meta']['flipped'][i], det_pred[i], calib[i], vis_thresh=opt.vis_thresh, img_id='add_pred') debugger.add_3d_detection(batch['meta']['img_path'][i], batch['meta']['flipped'][i], det_gt[i], calib[i], vis_thresh=opt.vis_thresh, img_id='add_gt') debugger.add_bird_views(det_pred[i], det_gt[i], vis_thresh=opt.vis_thresh, img_id='bird_pred_gt') if opt.debug == 4: debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id)) else: debugger.show_all_imgs(pause=True)
def debug(self, batch, output, iter_id): opt = self.opt reg = output['reg'] if opt.reg_offset else None hm_hp = output['hm_hp'] if opt.hm_hp else None hp_offset = output['hp_offset'] if opt.reg_hp_offset else None dets = multi_pose_decode(output['hm'], output['wh'], output['hps'], reg=reg, hm_hp=hm_hp, hp_offset=hp_offset, K=opt.K) dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2]) dets[:, :, :4] *= opt.input_res / opt.output_res dets[:, :, 5:39] *= opt.input_res / opt.output_res dets_gt = batch['meta']['gt_det'].numpy().reshape(1, -1, dets.shape[2]) dets_gt[:, :, :4] *= opt.input_res / opt.output_res dets_gt[:, :, 5:39] *= opt.input_res / opt.output_res for i in range(1): debugger = Debugger(dataset=opt.dataset, ipynb=(opt.debug == 3), theme=opt.debugger_theme) img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0) img = np.clip(((img * opt.std + opt.mean) * 255.), 0, 255).astype(np.uint8) pred = debugger.gen_colormap( output['hm'][i].detach().cpu().numpy()) gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hm') debugger.add_blend_img(img, gt, 'gt_hm') debugger.add_img(img, img_id='out_pred') for k in range(len(dets[i])): if dets[i, k, 4] > opt.center_thresh: debugger.add_coco_bbox(dets[i, k, :4], dets[i, k, -1], dets[i, k, 4], img_id='out_pred') debugger.add_coco_hp(dets[i, k, 5:39], img_id='out_pred') debugger.add_img(img, img_id='out_gt') for k in range(len(dets_gt[i])): if dets_gt[i, k, 4] > opt.center_thresh: debugger.add_coco_bbox(dets_gt[i, k, :4], dets_gt[i, k, -1], dets_gt[i, k, 4], img_id='out_gt') debugger.add_coco_hp(dets_gt[i, k, 5:39], img_id='out_gt') if opt.hm_hp: pred = debugger.gen_colormap_hp( output['hm_hp'][i].detach().cpu().numpy()) gt = debugger.gen_colormap_hp( batch['hm_hp'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hmhp') debugger.add_blend_img(img, gt, 'gt_hmhp') if opt.debug == 4: debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id)) else: debugger.show_all_imgs(pause=True)
def debug(self, batch, output, iter_id): opt = self.opt wh = output['wh'] if opt.reg_bbox else None reg = output['reg'] if opt.reg_offset else None dets = ddd_decode(output['hm'], output['rot'], output['dep'], output['dim'], wh=wh, reg=reg, K=opt.K) # x, y, score, r1-r8, depth, dim1-dim3, cls dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2]) calib = batch['meta']['calib'].detach().numpy() # x, y, score, rot, depth, dim1, dim2, dim3 # if opt.dataset == 'gta': # dets[:, 12:15] /= 3 dets_pred = ddd_post_process(dets.copy(), batch['meta']['c'].detach().numpy(), batch['meta']['s'].detach().numpy(), calib, opt) dets_gt = ddd_post_process( batch['meta']['gt_det'].detach().numpy().copy(), batch['meta']['c'].detach().numpy(), batch['meta']['s'].detach().numpy(), calib, opt) #for i in range(input.size(0)): for i in range(1): debugger = Debugger(dataset=opt.dataset, ipynb=(opt.debug == 3), theme=opt.debugger_theme) img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0) img = ((img * self.opt.std + self.opt.mean) * 255.).astype( np.uint8) pred = debugger.gen_colormap( output['hm'][i].detach().cpu().numpy()) gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'hm_pred') debugger.add_blend_img(img, gt, 'hm_gt') # decode debugger.add_ct_detection(img, dets[i], show_box=opt.reg_bbox, center_thresh=opt.center_thresh, img_id='det_pred') debugger.add_ct_detection( img, batch['meta']['gt_det'][i].cpu().numpy().copy(), show_box=opt.reg_bbox, img_id='det_gt') debugger.add_3d_detection(batch['meta']['image_path'][i], dets_pred[i], calib[i], center_thresh=opt.center_thresh, img_id='add_pred') debugger.add_3d_detection(batch['meta']['image_path'][i], dets_gt[i], calib[i], center_thresh=opt.center_thresh, img_id='add_gt') # debugger.add_bird_view( # dets_pred[i], center_thresh=opt.center_thresh, img_id='bird_pred') # debugger.add_bird_view(dets_gt[i], img_id='bird_gt') debugger.add_bird_views(dets_pred[i], dets_gt[i], center_thresh=opt.center_thresh, img_id='bird_pred_gt') # debugger.add_blend_img(img, pred, 'out', white=True) debugger.compose_vis_add(batch['meta']['image_path'][i], dets_pred[i], calib[i], opt.center_thresh, pred, 'bird_pred_gt', img_id='out') # debugger.add_img(img, img_id='out') if opt.debug == 4: debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id)) else: debugger.show_all_imgs(pause=True)
def step(split, epoch, opt, data_loader, model, optimizer=None): if split == 'train': model.train() else: model.eval() crit = torch.nn.MSELoss() crit_3d = FusionLoss(opt.device, opt.weight_3d, opt.weight_var) acc_idxs = data_loader.dataset.acc_idxs edges = data_loader.dataset.edges edges_3d = data_loader.dataset.edges_3d shuffle_ref = data_loader.dataset.shuffle_ref mean = data_loader.dataset.mean std = data_loader.dataset.std convert_eval_format = data_loader.dataset.convert_eval_format Loss, Loss3D = AverageMeter(), AverageMeter() Acc, MPJPE = AverageMeter(), AverageMeter() data_time, batch_time = AverageMeter(), AverageMeter() preds = [] time_str = '' nIters = len(data_loader) bar = Bar('{}'.format(opt.exp_id), max=nIters) end = time.time() for i, batch in enumerate(data_loader): data_time.update(time.time() - end) for k in batch: if k != 'meta': batch[k] = batch[k].cuda(device=opt.device, non_blocking=True) gt_2d = batch['meta']['pts_crop'].cuda( device=opt.device, non_blocking=True).float() / opt.output_h output = model(batch['input']) loss = crit(output[-1]['hm'], batch['target']) loss_3d = crit_3d(output[-1]['depth'], batch['reg_mask'], batch['reg_ind'], batch['reg_target'], gt_2d) for k in range(opt.num_stacks - 1): loss += crit(output[k], batch['target']) loss_3d = crit_3d(output[-1]['depth'], batch['reg_mask'], batch['reg_ind'], batch['reg_target'], gt_2d) loss += loss_3d if split == 'train': optimizer.zero_grad() loss.backward() optimizer.step() else: input_ = batch['input'].cpu().numpy().copy() input_[0] = flip(input_[0]).copy()[np.newaxis, ...] input_flip_var = torch.from_numpy(input_).cuda(device=opt.device, non_blocking=True) output_flip_ = model(input_flip_var) output_flip = shuffle_lr( flip(output_flip_[-1]['hm'].detach().cpu().numpy()[0]), shuffle_ref) output_flip = output_flip.reshape(1, opt.num_output, opt.output_h, opt.output_w) output_depth_flip = shuffle_lr( flip(output_flip_[-1]['depth'].detach().cpu().numpy()[0]), shuffle_ref) output_depth_flip = output_depth_flip.reshape( 1, opt.num_output, opt.output_h, opt.output_w) output_flip = torch.from_numpy(output_flip).cuda(device=opt.device, non_blocking=True) output_depth_flip = torch.from_numpy(output_depth_flip).cuda( device=opt.device, non_blocking=True) output[-1]['hm'] = (output[-1]['hm'] + output_flip) / 2 output[-1]['depth'] = (output[-1]['depth'] + output_depth_flip) / 2 # pred, amb_idx = get_preds(output[-1]['hm'].detach().cpu().numpy()) # preds.append(convert_eval_format(pred, conf, meta)[0]) Loss.update(loss.item(), batch['input'].size(0)) Loss3D.update(loss_3d.item(), batch['input'].size(0)) Acc.update( accuracy(output[-1]['hm'].detach().cpu().numpy(), batch['target'].detach().cpu().numpy(), acc_idxs)) mpeje_batch, mpjpe_cnt = mpjpe( output[-1]['hm'].detach().cpu().numpy(), output[-1]['depth'].detach().cpu().numpy(), batch['meta']['gt_3d'].detach().numpy(), convert_func=convert_eval_format) MPJPE.update(mpeje_batch, mpjpe_cnt) batch_time.update(time.time() - end) end = time.time() if not opt.hide_data_time: time_str = ' |Data {dt.avg:.3f}s({dt.val:.3f}s)' \ ' |Net {bt.avg:.3f}s'.format(dt=data_time, bt=batch_time) Bar.suffix = '{split}: [{0}][{1}/{2}] |Total {total:} |ETA {eta:} '\ '|Loss {loss.avg:.5f} |Loss3D {loss_3d.avg:.5f}'\ '|Acc {Acc.avg:.4f} |MPJPE {MPJPE.avg:.2f}'\ '{time_str}'.format(epoch, i, nIters, total=bar.elapsed_td, eta=bar.eta_td, loss=Loss, Acc=Acc, split=split, time_str=time_str, MPJPE=MPJPE, loss_3d=Loss3D) if opt.print_iter > 0: if i % opt.print_iter == 0: print('{}| {}'.format(opt.exp_id, Bar.suffix)) else: bar.next() if opt.debug >= 2: gt, amb_idx = get_preds(batch['target'].cpu().numpy()) gt *= 4 pred, amb_idx = get_preds(output[-1]['hm'].detach().cpu().numpy()) pred *= 4 debugger = Debugger(ipynb=opt.print_iter > 0, edges=edges) img = (batch['input'][0].cpu().numpy().transpose(1, 2, 0) * std + mean) * 256 img = img.astype(np.uint8).copy() debugger.add_img(img) debugger.add_mask( cv2.resize(batch['target'][0].cpu().numpy().max(axis=0), (opt.input_w, opt.input_h)), img, 'target') debugger.add_mask( cv2.resize( output[-1]['hm'][0].detach().cpu().numpy().max(axis=0), (opt.input_w, opt.input_h)), img, 'pred') debugger.add_point_2d(gt[0], (0, 0, 255)) debugger.add_point_2d(pred[0], (255, 0, 0)) debugger.add_point_3d(batch['meta']['gt_3d'].detach().numpy()[0], 'r', edges=edges_3d) pred_3d, ignore_idx = get_preds_3d( output[-1]['hm'].detach().cpu().numpy(), output[-1]['depth'].detach().cpu().numpy(), amb_idx) debugger.add_point_3d(convert_eval_format(pred_3d[0]), 'b', edges=edges_3d) debugger.show_all_imgs(pause=False) debugger.show_3d() bar.finish() return { 'loss': Loss.avg, 'acc': Acc.avg, 'mpjpe': MPJPE.avg, 'time': bar.elapsed_td.total_seconds() / 60. }, preds
import numpy as np from opts import opts from datasets.dataset.yolo import YOLO from utils.debugger import Debugger if __name__ == '__main__': opt = opts().parse() dataset = YOLO(opt.data_dir, opt.flip, opt.vflip, opt.rotate, opt.scale, opt.shear, opt, 'train') opt = opts().update_dataset_info_and_set_heads(opt, dataset) for i in range(len(dataset)): debugger = Debugger(dataset=opt.names) data = dataset[i] img = data['input'].transpose(1, 2, 0) hm = data['hm'] dets_gt = data['meta']['gt_det'] dets_gt[:, :4] *= opt.down_ratio img = np.clip(((img * dataset.std + dataset.mean) * 255.), 0, 255).astype(np.uint8) pred = debugger.gen_colormap(hm) debugger.add_blend_img(img, pred, 'pred_hm') debugger.add_img(img, img_id='out_pred') for k in range(len(dets_gt)): debugger.add_coco_bbox(dets_gt[k, :4], dets_gt[k, -1], dets_gt[k, 4], img_id='out_pred') debugger.show_all_imgs(pause=True)
def step(split, epoch, opt, data_loader, model, optimizer=None): if split == 'train': model.train() else: model.eval() crit = torch.nn.MSELoss() acc_idxs = data_loader.dataset.acc_idxs edges = data_loader.dataset.edges shuffle_ref = data_loader.dataset.shuffle_ref mean = data_loader.dataset.mean std = data_loader.dataset.std convert_eval_format = data_loader.dataset.convert_eval_format Loss, Acc = AverageMeter(), AverageMeter() data_time, batch_time = AverageMeter(), AverageMeter() preds = [] nIters = len(data_loader) bar = Bar('{}'.format(opt.exp_id), max=nIters) end = time.time() for i, batch in enumerate(data_loader): data_time.update(time.time() - end) input, target, meta = batch['input'], batch['target'], batch['meta'] input_var = input.cuda(device=opt.device, non_blocking=True) target_var = target.cuda(device=opt.device, non_blocking=True) output = model(input_var) loss = crit(output[-1]['hm'], target_var) for k in range(opt.num_stacks - 1): loss += crit(output[k], target_var) if split == 'train': optimizer.zero_grad() loss.backward() optimizer.step() else: input_ = input.cpu().numpy().copy() input_[0] = flip(input_[0]).copy()[np.newaxis, ...] input_flip_var = torch.from_numpy(input_).cuda(device=opt.device, non_blocking=True) output_flip = model(input_flip_var) output_flip = shuffle_lr( flip(output_flip[-1]['hm'].detach().cpu().numpy()[0]), shuffle_ref) output_flip = output_flip.reshape(1, opt.num_output, opt.output_h, opt.output_w) # output_ = (output[-1].detach().cpu().numpy() + output_flip) / 2 output_flip = torch.from_numpy(output_flip).cuda(device=opt.device, non_blocking=True) output[-1]['hm'] = (output[-1]['hm'] + output_flip) / 2 pred, conf = get_preds(output[-1]['hm'].detach().cpu().numpy(), True) preds.append(convert_eval_format(pred, conf, meta)[0]) Loss.update(loss.detach()[0], input.size(0)) Acc.update( accuracy(output[-1]['hm'].detach().cpu().numpy(), target_var.detach().cpu().numpy(), acc_idxs)) batch_time.update(time.time() - end) end = time.time() if not opt.hide_data_time: time_str = ' |Data {dt.avg:.3f}s({dt.val:.3f}s)' \ ' |Net {bt.avg:.3f}s'.format(dt = data_time, bt = batch_time) else: time_str = '' Bar.suffix = '{split}: [{0}][{1}/{2}] |Total {total:} |ETA {eta:}' \ '|Loss {loss.avg:.5f} |Acc {Acc.avg:.4f}'\ '{time_str}'.format(epoch, i, nIters, total=bar.elapsed_td, eta=bar.eta_td, loss=Loss, Acc=Acc, split = split, time_str = time_str) if opt.print_iter > 0: if i % opt.print_iter == 0: print('{}| {}'.format(opt.exp_id, Bar.suffix)) else: bar.next() if opt.debug >= 2: gt = get_preds(target.cpu().numpy()) * 4 pred = get_preds(output[-1]['hm'].detach().cpu().numpy()) * 4 debugger = Debugger(ipynb=opt.print_iter > 0, edges=edges) img = (input[0].numpy().transpose(1, 2, 0) * std + mean) * 256 img = img.astype(np.uint8).copy() debugger.add_img(img) debugger.add_mask( cv2.resize(target[0].numpy().max(axis=0), (opt.input_w, opt.input_h)), img, 'target') debugger.add_mask( cv2.resize( output[-1]['hm'][0].detach().cpu().numpy().max(axis=0), (opt.input_w, opt.input_h)), img, 'pred') debugger.add_point_2d(pred[0], (255, 0, 0)) debugger.add_point_2d(gt[0], (0, 0, 255)) debugger.show_all_imgs(pause=True) bar.finish() return { 'loss': Loss.avg, 'acc': Acc.avg, 'time': bar.elapsed_td.total_seconds() / 60. }, preds
def debug(self, batch, output, iter_id): cfg = self.cfg reg = output[3] if cfg.LOSS.REG_OFFSET else None hm_hp = output[4] if cfg.LOSS.HM_HP else None hp_offset = output[5] if cfg.LOSS.REG_HP_OFFSET else None dets = multi_pose_decode(output[0], output[1], output[2], reg=reg, hm_hp=hm_hp, hp_offset=hp_offset, K=cfg.TEST.TOPK) dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2]) dets[:, :, :4] *= cfg.MODEL.INPUT_RES / cfg.MODEL.OUTPUT_RES dets[:, :, 5:39] *= cfg.MODEL.INPUT_RES / cfg.MODEL.OUTPUT_RES dets_gt = batch['meta']['gt_det'].numpy().reshape(1, -1, dets.shape[2]) dets_gt[:, :, :4] *= cfg.MODEL.INPUT_RES / cfg.MODEL.OUTPUT_RES dets_gt[:, :, 5:39] *= cfg.MODEL.INPUT_RES / cfg.MODEL.OUTPUT_RES for i in range(1): debugger = Debugger(dataset=cfg.SAMPLE_METHOD, ipynb=(cfg.DEBUG == 3), theme=cfg.DEBUG_THEME) img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0) img = np.clip(((img * np.array(cfg.DATASET.STD).reshape( 1, 1, 3).astype(np.float32) + cfg.DATASET.MEAN) * 255.), 0, 255).astype(np.uint8) pred = debugger.gen_colormap(output[0][i].detach().cpu().numpy()) gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hm') debugger.add_blend_img(img, gt, 'gt_hm') debugger.add_img(img, img_id='out_pred') for k in range(len(dets[i])): if dets[i, k, 4] > cfg.MODEL.CENTER_THRESH: debugger.add_coco_bbox(dets[i, k, :4], dets[i, k, -1], dets[i, k, 4], img_id='out_pred') debugger.add_coco_hp(dets[i, k, 5:39], img_id='out_pred') debugger.add_img(img, img_id='out_gt') for k in range(len(dets_gt[i])): if dets_gt[i, k, 4] > cfg.MODEL.CENTER_THRESH: debugger.add_coco_bbox(dets_gt[i, k, :4], dets_gt[i, k, -1], dets_gt[i, k, 4], img_id='out_gt') debugger.add_coco_hp(dets_gt[i, k, 5:39], img_id='out_gt') if cfg.LOSS.HM_HP: pred = debugger.gen_colormap_hp( output[4][i].detach().cpu().numpy()) gt = debugger.gen_colormap_hp( batch['hm_hp'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hmhp') debugger.add_blend_img(img, gt, 'gt_hmhp') if cfg.DEBUG == 4: debugger.save_all_imgs(cfg.LOG_DIR, prefix='{}'.format(iter_id)) else: debugger.show_all_imgs(pause=True)
def debug(self, batch, output, iter_id): opt = self.opt reg = output['reg'] if opt.reg_offset else None # print(output) dets = circledet_decode(output['hm'], output['cl'], reg=reg, cat_spec_wh=opt.cat_spec_wh, K=opt.K) # print(dets) if opt.filter_boarder: output_h = self.opt.default_resolution[ 0] // self.opt.down_ratio #hard coded output_w = self.opt.default_resolution[ 1] // self.opt.down_ratio #hard coded for i in range(dets.shape[1]): cp = [0, 0] cp[0] = dets[0, i, 0] cp[1] = dets[0, i, 1] cr = dets[0, i, 2] if cp[0] - cr < 0 or cp[0] + cr > output_w: dets[0, i, 3] = 0 continue if cp[1] - cr < 0 or cp[1] + cr > output_h: dets[0, i, 3] = 0 continue dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2]) dets[:, :, :3] *= opt.down_ratio dets_gt = batch['meta']['gt_det'].numpy().reshape(1, -1, dets.shape[2]) dets_gt[:, :, :3] *= opt.down_ratio for i in range(1): debugger = Debugger(dataset=opt.dataset, ipynb=(opt.debug == 3), theme=opt.debugger_theme) img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0) img = np.clip(((img * opt.std + opt.mean) * 255.), 0, 255).astype(np.uint8) pred = debugger.gen_colormap( output['hm'][i].detach().cpu().numpy()) gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hm') debugger.add_blend_img(img, gt, 'gt_hm') debugger.add_img(img, img_id='out_pred') for k in range(len(dets[i])): # print('risk = %f' % dets[i, k, 3]) if dets[i, k, 3] > opt.center_thresh: debugger.add_coco_circle(dets[i, k, :3], dets[i, k, -1], dets[i, k, 3], img_id='out_pred') debugger.add_img(img, img_id='out_gt') for k in range(len(dets_gt[i])): if dets_gt[i, k, 3] > opt.center_thresh: debugger.add_coco_circle(dets_gt[i, k, :3], dets_gt[i, k, -1], dets_gt[i, k, 3], img_id='out_gt') if opt.debug == 4: debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id)) else: debugger.show_all_imgs(pause=True)
def kp_detection(db, k_ind, data_aug, debug): data_rng = system_configs.data_rng batch_size = system_configs.batch_size categories = db.configs["categories"] input_size = db.configs["input_size"] output_size = db.configs["output_sizes"][0] border = db.configs["border"] lighting = db.configs["lighting"] rand_crop = db.configs["rand_crop"] rand_color = db.configs["rand_color"] rand_scales = db.configs["rand_scales"] gaussian_bump = db.configs["gaussian_bump"] gaussian_iou = db.configs["gaussian_iou"] gaussian_rad = db.configs["gaussian_radius"] max_tag_len = 128 # allocating memory images = np.zeros((batch_size, 3, input_size[0], input_size[1]), dtype=np.float32) t_heatmaps = np.zeros( (batch_size, categories, output_size[0], output_size[1]), dtype=np.float32) l_heatmaps = np.zeros( (batch_size, categories, output_size[0], output_size[1]), dtype=np.float32) b_heatmaps = np.zeros( (batch_size, categories, output_size[0], output_size[1]), dtype=np.float32) r_heatmaps = np.zeros( (batch_size, categories, output_size[0], output_size[1]), dtype=np.float32) ct_heatmaps = np.zeros( (batch_size, categories, output_size[0], output_size[1]), dtype=np.float32) t_regrs = np.zeros((batch_size, max_tag_len, 2), dtype=np.float32) l_regrs = np.zeros((batch_size, max_tag_len, 2), dtype=np.float32) b_regrs = np.zeros((batch_size, max_tag_len, 2), dtype=np.float32) r_regrs = np.zeros((batch_size, max_tag_len, 2), dtype=np.float32) t_tags = np.zeros((batch_size, max_tag_len), dtype=np.int64) l_tags = np.zeros((batch_size, max_tag_len), dtype=np.int64) b_tags = np.zeros((batch_size, max_tag_len), dtype=np.int64) r_tags = np.zeros((batch_size, max_tag_len), dtype=np.int64) ct_tags = np.zeros((batch_size, max_tag_len), dtype=np.int64) tag_masks = np.zeros((batch_size, max_tag_len), dtype=np.uint8) tag_lens = np.zeros((batch_size, ), dtype=np.int32) db_size = db.db_inds.size for b_ind in range(batch_size): if not debug and k_ind == 0: db.shuffle_inds() db_ind = db.db_inds[k_ind] k_ind = (k_ind + 1) % db_size # reading image image_file = db.image_file(db_ind) image = cv2.imread(image_file) # reading detections detections, extreme_pts = db.detections(db_ind) # cropping an image randomly if rand_crop: image, detections, extreme_pts = random_crop_pts(image, detections, extreme_pts, rand_scales, input_size, border=border) else: assert 0 # image, detections = _full_image_crop(image, detections) image, detections, extreme_pts = _resize_image_pts( image, detections, extreme_pts, input_size) detections, extreme_pts = _clip_detections_pts(image, detections, extreme_pts) width_ratio = output_size[1] / input_size[1] height_ratio = output_size[0] / input_size[0] # flipping an image randomly if np.random.uniform() > 0.5: image[:] = image[:, ::-1, :] width = image.shape[1] detections[:, [0, 2]] = width - detections[:, [2, 0]] - 1 extreme_pts[:, :, 0] = width - extreme_pts[:, :, 0] - 1 extreme_pts[:, 1, :], extreme_pts[:, 3, :] = \ extreme_pts[:, 3, :].copy(), extreme_pts[:, 1, :].copy() image = image.astype(np.float32) / 255. if not debug: if rand_color: color_jittering_(data_rng, image) if lighting: lighting_(data_rng, image, 0.1, db.eig_val, db.eig_vec) normalize_(image, db.mean, db.std) images[b_ind] = image.transpose((2, 0, 1)) for ind, detection in enumerate(detections): category = int(detection[-1]) - 1 extreme_pt = extreme_pts[ind] xt, yt = extreme_pt[0, 0], extreme_pt[0, 1] xl, yl = extreme_pt[1, 0], extreme_pt[1, 1] xb, yb = extreme_pt[2, 0], extreme_pt[2, 1] xr, yr = extreme_pt[3, 0], extreme_pt[3, 1] xct = (xl + xr) / 2 yct = (yt + yb) / 2 fxt = (xt * width_ratio) fyt = (yt * height_ratio) fxl = (xl * width_ratio) fyl = (yl * height_ratio) fxb = (xb * width_ratio) fyb = (yb * height_ratio) fxr = (xr * width_ratio) fyr = (yr * height_ratio) fxct = (xct * width_ratio) fyct = (yct * height_ratio) xt = int(fxt) yt = int(fyt) xl = int(fxl) yl = int(fyl) xb = int(fxb) yb = int(fyb) xr = int(fxr) yr = int(fyr) xct = int(fxct) yct = int(fyct) if gaussian_bump: width = detection[2] - detection[0] height = detection[3] - detection[1] width = math.ceil(width * width_ratio) height = math.ceil(height * height_ratio) if gaussian_rad == -1: radius = gaussian_radius((height, width), gaussian_iou) radius = max(0, int(radius)) else: radius = gaussian_rad draw_gaussian(t_heatmaps[b_ind, category], [xt, yt], radius) draw_gaussian(l_heatmaps[b_ind, category], [xl, yl], radius) draw_gaussian(b_heatmaps[b_ind, category], [xb, yb], radius) draw_gaussian(r_heatmaps[b_ind, category], [xr, yr], radius) draw_gaussian(ct_heatmaps[b_ind, category], [xct, yct], radius) else: t_heatmaps[b_ind, category, yt, xt] = 1 l_heatmaps[b_ind, category, yl, xl] = 1 b_heatmaps[b_ind, category, yb, xb] = 1 r_heatmaps[b_ind, category, yr, xr] = 1 tag_ind = tag_lens[b_ind] t_regrs[b_ind, tag_ind, :] = [fxt - xt, fyt - yt] l_regrs[b_ind, tag_ind, :] = [fxl - xl, fyl - yl] b_regrs[b_ind, tag_ind, :] = [fxb - xb, fyb - yb] r_regrs[b_ind, tag_ind, :] = [fxr - xr, fyr - yr] t_tags[b_ind, tag_ind] = yt * output_size[1] + xt l_tags[b_ind, tag_ind] = yl * output_size[1] + xl b_tags[b_ind, tag_ind] = yb * output_size[1] + xb r_tags[b_ind, tag_ind] = yr * output_size[1] + xr ct_tags[b_ind, tag_ind] = yct * output_size[1] + xct tag_lens[b_ind] += 1 for b_ind in range(batch_size): tag_len = tag_lens[b_ind] tag_masks[b_ind, :tag_len] = 1 if debug: debugger = Debugger(num_classes=1) t_hm = debugger.gen_colormap(t_heatmaps[0]) l_hm = debugger.gen_colormap(l_heatmaps[0]) b_hm = debugger.gen_colormap(b_heatmaps[0]) r_hm = debugger.gen_colormap(r_heatmaps[0]) ct_hm = debugger.gen_colormap(ct_heatmaps[0]) img = images[0] * db.std.reshape(3, 1, 1) + db.mean.reshape(3, 1, 1) img = (img * 255).astype(np.uint8).transpose(1, 2, 0) debugger.add_blend_img(img, t_hm, 't_hm') debugger.add_blend_img(img, l_hm, 'l_hm') debugger.add_blend_img(img, b_hm, 'b_hm') debugger.add_blend_img(img, r_hm, 'r_hm') debugger.add_blend_img( img, np.maximum(np.maximum(t_hm, l_hm), np.maximum(b_hm, r_hm)), 'extreme') debugger.add_blend_img(img, ct_hm, 'center') debugger.show_all_imgs(pause=True) images = torch.from_numpy(images) t_heatmaps = torch.from_numpy(t_heatmaps) l_heatmaps = torch.from_numpy(l_heatmaps) b_heatmaps = torch.from_numpy(b_heatmaps) r_heatmaps = torch.from_numpy(r_heatmaps) ct_heatmaps = torch.from_numpy(ct_heatmaps) t_regrs = torch.from_numpy(t_regrs) l_regrs = torch.from_numpy(l_regrs) b_regrs = torch.from_numpy(b_regrs) r_regrs = torch.from_numpy(r_regrs) t_tags = torch.from_numpy(t_tags) l_tags = torch.from_numpy(l_tags) b_tags = torch.from_numpy(b_tags) r_tags = torch.from_numpy(r_tags) ct_tags = torch.from_numpy(ct_tags) tag_masks = torch.from_numpy(tag_masks) return { "xs": [images, t_tags, l_tags, b_tags, r_tags, ct_tags], "ys": [ t_heatmaps, l_heatmaps, b_heatmaps, r_heatmaps, ct_heatmaps, tag_masks, t_regrs, l_regrs, b_regrs, r_regrs ] }, k_ind
def debug(self, batch, output, iter_id): opt = self.opt # reg = output['reg'] if opt.reg_offset else None reg = output['reg'][0:1] if opt.reg_offset else None # dets = ctdet_decode( # output['hm'], output['wh'], reg=reg, # cat_spec_wh=opt.cat_spec_wh, K=opt.K) dets = ctdet_decode(output['hm'][0:1], output['wh'][0:1], reg=reg, cat_spec_wh=opt.cat_spec_wh, K=opt.K) dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2]) dets[:, :, :4] *= opt.down_ratio # FIXME: change from tensor to list and then reshape # dets_gt = batch['meta']['gt_det'].numpy().reshape(1, -1, dets.shape[2]) # batch['meta_gt_det'] = [128, 128, 6] gt_det = batch['meta_gt_det'][0:1] gt_det = np.array(gt_det, dtype=np.float32) if len(gt_det) > 0 else \ np.zeros((1, 6), dtype=np.float32) dets_gt = gt_det.reshape(1, -1, dets.shape[2]) # print(batch['meta_img_id'][0:1]) dets_gt[:, :, :4] *= opt.down_ratio for i in range(1): debugger = Debugger(dataset=opt.dataset, ipynb=(opt.debug == 3), theme=opt.debugger_theme) img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0) img = np.clip(((img * opt.std + opt.mean) * 255.), 0, 255).astype(np.uint8) pred = debugger.gen_colormap( output['hm'][i].detach().cpu().numpy()) gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hm') debugger.add_blend_img(img, gt, 'gt_hm') debugger.add_img(img, img_id='out_pred') for k in range(len(dets[i])): if dets[i, k, 4] > opt.center_thresh: debugger.add_coco_bbox(dets[i, k, :4], dets[i, k, -1], dets[i, k, 4], img_id='out_pred') debugger.add_img(img, img_id='out_gt') for k in range(len(dets_gt[i])): if dets_gt[i, k, 4] > opt.center_thresh: debugger.add_coco_bbox(dets_gt[i, k, :4], dets_gt[i, k, -1], dets_gt[i, k, 4], img_id='out_gt') if opt.debug == 4: debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id)) elif opt.debug == 5: debugger.show_all_imgs(pause=opt.pause, logger=self.logger, step=iter_id) else: debugger.show_all_imgs(pause=opt.pause, step=iter_id)
def debug(self, batch, output, iter_id): opt = self.opt reg = output['reg'] if opt.reg_offset else None dets = rodet_decode(output['hm'], output['wh'], output['angle'], reg=reg, cat_spec_wh=opt.cat_spec_wh, cat_spec_angle=opt.cat_spec_angle, K=opt.K) dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2]) dets[:, :, :4] *= opt.down_ratio # dets_gt_dense = rodet_decode( # batch['hm'], batch['dense_wh'], batch['dense_angle'], reg=reg, # cat_spec_wh=opt.cat_spec_wh, cat_spec_angle=opt.cat_spec_angle, K=opt.K) # dets_gt_dense = dets_gt_dense.detach().cpu().numpy().reshape(1, -1, dets_gt_dense.shape[2]) # dets_gt_dense[:, :, :4] *= opt.down_ratio dets_gt = batch['meta']['gt_det'].numpy().reshape(1, -1, dets.shape[2]) img_name = batch['meta']['img_name'] dets_gt[:, :, :4] *= opt.down_ratio for i in range(1): debugger = Debugger(dataset=opt.dataset, ipynb=(opt.debug == 3), theme=opt.debugger_theme) img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0) img = np.clip(((img * opt.std + opt.mean) * 255.), 0, 255).astype(np.uint8) pred = debugger.gen_colormap( output['hm'][i].detach().cpu().numpy()) # gt_ang_mask = debugger.gen_colormap(batch['dense_angle_mask'][i].detach().cpu().numpy()) # gt_ang = debugger.gen_colormap(batch['dense_angle'][i].detach().cpu().numpy()) gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, '{}_pred_hm'.format(img_name)) # debugger.add_blend_img(img, gt_ang_mask, 'gt_angle_mask') # debugger.add_blend_img(img, gt_ang, 'gt_angle') debugger.add_blend_img(img, gt, '{}_gt_hm'.format(img_name)) debugger.add_img(img, img_id='{}_out_pred'.format(img_name)) for k in range(len(dets[i])): if dets[i, k, 5] > opt.center_thresh: # print("pred dets add_rbbox=======================") debugger.add_rbbox(dets[i, k, :5], dets[i, k, -1], dets[i, k, 5], show_txt=False, img_id='{}_out_pred'.format(img_name)) # debugger.add_img(img, img_id='{}_dets_gt_dense'.format(img_name)) # for k in range(len(dets_gt_dense[i])): # if dets_gt_dense[i, k, 5] > opt.center_thresh: # # print("pred dets add_rbbox=======================") # debugger.add_rbbox(dets_gt_dense[i, k, :5], dets_gt_dense[i, k, -1], # dets_gt_dense[i, k, 5], show_txt=False, img_id='{}_dets_gt_dense'.format(img_name)) debugger.add_img(img, img_id='{}_out_gt'.format(img_name)) for k in range(len(dets_gt[i])): if dets_gt[i, k, 5] > opt.center_thresh: # print("GT add_rbbox=======================") # 说明add_rbbox(self, rbbox, cat, conf=1, show_txt=True, img_id='default') # gt格式 gt_det.append([ct[0], ct[1], w, h, a, 1, cls_id]) debugger.add_rbbox(dets_gt[i, k, :5], dets_gt[i, k, -1], dets_gt[i, k, 5], show_txt=False, img_id='{}_out_gt'.format(img_name)) if opt.debug == 4: debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id)) else: debugger.show_all_imgs(pause=True)
def debug(self, batch, output, iter_id, dataset): opt = self.opt if "pre_hm" in batch: output.update({"pre_hm": batch["pre_hm"]}) dets = generic_decode(output, K=opt.K, opt=opt) for k in dets: dets[k] = dets[k].detach().cpu().numpy() dets_gt = batch["meta"]["gt_det"] for i in range(1): debugger = Debugger(opt=opt, dataset=dataset) img = batch["image"][i].detach().cpu().numpy().transpose(1, 2, 0) img = np.clip(((img * dataset.std + dataset.mean) * 255.0), 0, 255).astype(np.uint8) pred = debugger.gen_colormap(output["hm"][i].detach().cpu().numpy()) gt = debugger.gen_colormap(batch["hm"][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, "pred_hm") debugger.add_blend_img(img, gt, "gt_hm") if "pre_img" in batch: pre_img = batch["pre_img"][i].detach().cpu().numpy().transpose(1, 2, 0) pre_img = np.clip(((pre_img * dataset.std + dataset.mean) * 255), 0, 255).astype(np.uint8) debugger.add_img(pre_img, "pre_img_pred") debugger.add_img(pre_img, "pre_img_gt") if "pre_hm" in batch: pre_hm = debugger.gen_colormap(batch["pre_hm"][i].detach().cpu().numpy()) debugger.add_blend_img(pre_img, pre_hm, "pre_hm") debugger.add_img(img, img_id="out_pred") if "ltrb_amodal" in opt.heads: debugger.add_img(img, img_id="out_pred_amodal") debugger.add_img(img, img_id="out_gt_amodal") # Predictions for k in range(len(dets["scores"][i])): if dets["scores"][i, k] > opt.vis_thresh: debugger.add_coco_bbox( dets["bboxes"][i, k] * opt.down_ratio, dets["clses"][i, k], dets["scores"][i, k], img_id="out_pred", ) if "ltrb_amodal" in opt.heads: debugger.add_coco_bbox( dets["bboxes_amodal"][i, k] * opt.down_ratio, dets["clses"][i, k], dets["scores"][i, k], img_id="out_pred_amodal", ) if "hps" in opt.heads and int(dets["clses"][i, k]) == 0: debugger.add_coco_hp(dets["hps"][i, k] * opt.down_ratio, img_id="out_pred") if "tracking" in opt.heads: debugger.add_arrow( dets["cts"][i][k] * opt.down_ratio, dets["tracking"][i][k] * opt.down_ratio, img_id="out_pred", ) debugger.add_arrow( dets["cts"][i][k] * opt.down_ratio, dets["tracking"][i][k] * opt.down_ratio, img_id="pre_img_pred", ) # Ground truth debugger.add_img(img, img_id="out_gt") for k in range(len(dets_gt["scores"][i])): if dets_gt["scores"][i][k] > opt.vis_thresh: debugger.add_coco_bbox( dets_gt["bboxes"][i][k] * opt.down_ratio, dets_gt["clses"][i][k], dets_gt["scores"][i][k], img_id="out_gt", ) if "ltrb_amodal" in opt.heads: debugger.add_coco_bbox( dets_gt["bboxes_amodal"][i, k] * opt.down_ratio, dets_gt["clses"][i, k], dets_gt["scores"][i, k], img_id="out_gt_amodal", ) if "hps" in opt.heads and (int(dets["clses"][i, k]) == 0): debugger.add_coco_hp(dets_gt["hps"][i][k] * opt.down_ratio, img_id="out_gt") if "tracking" in opt.heads: debugger.add_arrow( dets_gt["cts"][i][k] * opt.down_ratio, dets_gt["tracking"][i][k] * opt.down_ratio, img_id="out_gt", ) debugger.add_arrow( dets_gt["cts"][i][k] * opt.down_ratio, dets_gt["tracking"][i][k] * opt.down_ratio, img_id="pre_img_gt", ) if "hm_hp" in opt.heads: pred = debugger.gen_colormap_hp(output["hm_hp"][i].detach().cpu().numpy()) gt = debugger.gen_colormap_hp(batch["hm_hp"][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, "pred_hmhp") debugger.add_blend_img(img, gt, "gt_hmhp") if "rot" in opt.heads and "dim" in opt.heads and "dep" in opt.heads: dets_gt = {k: dets_gt[k].cpu().numpy() for k in dets_gt} calib = batch["meta"]["calib"].detach().numpy() if "calib" in batch["meta"] else None det_pred = generic_post_process( opt, dets, batch["meta"]["c"].cpu().numpy(), batch["meta"]["s"].cpu().numpy(), output["hm"].shape[2], output["hm"].shape[3], self.opt.num_classes, calib, ) det_gt = generic_post_process( opt, dets_gt, batch["meta"]["c"].cpu().numpy(), batch["meta"]["s"].cpu().numpy(), output["hm"].shape[2], output["hm"].shape[3], self.opt.num_classes, calib, ) debugger.add_3d_detection( batch["meta"]["img_path"][i], batch["meta"]["flipped"][i], det_pred[i], calib[i], vis_thresh=opt.vis_thresh, img_id="add_pred", ) debugger.add_3d_detection( batch["meta"]["img_path"][i], batch["meta"]["flipped"][i], det_gt[i], calib[i], vis_thresh=opt.vis_thresh, img_id="add_gt", ) debugger.add_bird_views(det_pred[i], det_gt[i], vis_thresh=opt.vis_thresh, img_id="bird_pred_gt") if opt.debug == 4: debugger.save_all_imgs(opt.debug_dir, prefix="{}".format(iter_id)) else: debugger.show_all_imgs(pause=True)