def decoder(params): data_path = params['data_path'] glove_embed = params['glove_embedding'] oov_embed = params['oov_embedding'] preprocessed_v2 = params['preprocessed_v2'] preprocessed_data = params['preprocessed_data'] decode_path = params['decode_path'] model_path = params['model_path'] result_path = params['result_path'] result_kp20k = params['result_kp20k'] file_name = params['file_name'] weights = params['weights'] encoder_length = params['encoder_length'] decoder_length = params['decoder_length'] embedding_dim = params['embedding_dim'] birnn_dim = params['birnn_dim'] rnn_dim = params['rnn_dim'] vocab_size = params['vocab_size'] batch_size = params['batch_size'] epoch = params['epoch'] ''' Reading vocabulary dictionaries ''' indices_words_connector = DataConnector( preprocessed_v2, 'all_idxword_vocabulary_fsoftmax.pkl', data=None) indices_words_connector.read_pickle() indices_words = indices_words_connector.read_file words_indices_connector = DataConnector( preprocessed_v2, 'all_wordidx_vocabulary_fsoftmax.pkl', data=None) words_indices_connector.read_pickle() words_indices = words_indices_connector.read_file ## merge all set into one test set for trained model train_outputs_conn = DataConnector(data_path, 'train_output_tokens.npy', data=None) train_outputs_conn.read_numpys() train_outputs = train_outputs_conn.read_file valid_outputs_conn = DataConnector(data_path, 'val_output_tokens.npy', data=None) valid_outputs_conn.read_numpys() valid_outputs = valid_outputs_conn.read_file test_outputs_conn = DataConnector(data_path, 'test_output_tokens.npy', data=None) test_outputs_conn.read_numpys() test_outputs = test_outputs_conn.read_file y_test_true = np.concatenate((train_outputs, valid_outputs, test_outputs)) print("Ground truth of keyphrases shape: %s" % str(y_test_true.shape)) # input for encoder sys.stdout.flush() # non-paired data set X_train_connector = DataConnector(preprocessed_data, 'X_train_pad_fsoftmax.npy', data=None) X_train_connector.read_numpys() X_train = X_train_connector.read_file X_valid_connector = DataConnector(preprocessed_data, 'X_valid_pad_fsoftmax.npy', data=None) X_valid_connector.read_numpys() X_valid = X_valid_connector.read_file X_test_connector = DataConnector(preprocessed_data, 'X_test_pad_fsoftmax.npy', data=None) X_test_connector.read_numpys() X_test = X_test_connector.read_file X_in = np.concatenate((X_train, X_valid, X_test)) glove_embedding_conn = DataConnector(preprocessed_v2, glove_embed, data=None) glove_embedding_conn.read_pickle() pretrained_embedding = glove_embedding_conn.read_file print("pretrained_embedding shape: %s" % str(pretrained_embedding.shape)) print("pretrained_embedding [0][:10]: %s" % str(pretrained_embedding[0, :10])) print("pretrained_embedding [1][:10]: %s" % str(pretrained_embedding[1, :10])) oov_embedding_conn = DataConnector(preprocessed_v2, oov_embed, data=None) oov_embedding_conn.read_pickle() oov_embedding = oov_embedding_conn.read_file print("oov_embedding shape: %s" % str(oov_embedding.shape)) print("oov_embedding [0][:10]: %s" % str(oov_embedding[0, :10])) print("oov_embedding [1][:10]: %s" % str(oov_embedding[1, :10])) print("oov_embedding [2][:10]: %s" % str(oov_embedding[2, :10])) full_softmax = AttentionFullSoftmax(encoder_length=encoder_length, decoder_length=decoder_length, embedding_dim=embedding_dim, birnn_dim=birnn_dim, rnn_dim=rnn_dim, vocab_size=vocab_size, filepath=result_kp20k, filename=file_name, batch_train_iter=None, batch_val_iter=None, batch_size=None, steps_epoch=None, val_steps=None, epochs=None) full_softmax.train_att_seq2seq(pretrained_embedding, oov_embedding) full_softmax.predict_att_seq2seq(weights) encoder_model = full_softmax.encoder_model # 1. Prediction model after being trained on sampled softmax setting predict_softmax_model = full_softmax.prediction_model ''' Inference stage Model: layers from prediction model and decoder model Inference (text generation) approach: 1. One best search decoding (Greedy search): Return one best (top) probable word sequence, from joint probability of words within decoder time steps (decoder sequence length) 2. N-Beam search decoding: Return N-top best most probable word sequences, by utilizing beam tree search per time steps and joint probability within decoder time steps (decoder sequence length) ''' ''' Decoder model for inference stage Return: generated keyphrases ''' decoder_model = full_softmax.create_decoder_model() # transform tokenized y_true (ground truth of keyphrases) into full sentences / keyphrases keyphrases_transform = TrueKeyphrases(y_test_true) keyphrases_transform.get_true_keyphrases() keyphrases_transform.get_stat_keyphrases() y_true = keyphrases_transform.y_true max_kp_num = keyphrases_transform.max_kp_num mean_kp_num = keyphrases_transform.mean_kp_num std_kp_num = keyphrases_transform.std_kp_num print("Maximum number of key phrases per document in corpus: %s" % max_kp_num) sys.stdout.flush() print("Average number of key phrases per document in corpus: %s" % mean_kp_num) sys.stdout.flush() print( "Standard Deviation of number of key phrases per document in corpus: %s" % std_kp_num) sys.stdout.flush() # round up function for computing beam width def roundup(x): return x if x % 5 == 0 else x + 5 - x % 5 beam_width = int(roundup(mean_kp_num + (3 * std_kp_num))) num_hypotheses = beam_width print("\nBeam width: %s\n" % beam_width) sys.stdout.flush() s0_test = np.zeros((len(X_in), rnn_dim)) att0_test = np.zeros((len(X_in), encoder_length, 1)) print(str(datetime.now())) sys.stdout.flush() inference_mode = Decoding(encoder_model=encoder_model, decoder_model=decoder_model, indices_words=indices_words, words_indices=words_indices, enc_in_seq=None, states=None, attentions=None, decoder_length=decoder_length, rnn_dim=rnn_dim, beam_width=beam_width, num_hypotheses=num_hypotheses, filepath=decode_path, filename=file_name) t0_1 = time.time() print("Start beam decoding...") sys.stdout.flush() beam_keyphrases = inference_mode.beam_decoder(X_in[:500], s0_test[:500], att0_test[:500]) beam_decode_connector = DataConnector(decode_path, 'beam_kp-%s.npy' % (file_name), beam_keyphrases) beam_decode_connector.save_numpys() t1_1 = time.time() print("Beam decoding is done in %.3fsec" % (t1_1 - t0_1)) sys.stdout.flush()
def decoder(params): data_path = params['data_path'] preprocessed_v2 = params['preprocessed_v2'] preprocessed_data = params['preprocessed_data'] decode_path = params['decode_path'] model_path = params['model_path'] result_path = params['result_path'] file_name = params['file_name'] weights = params['weights'] encoder_length = params['encoder_length'] decoder_length = params['decoder_length'] embedding_dim = params['embedding_dim'] birnn_dim = params['birnn_dim'] rnn_dim = params['rnn_dim'] vocab_size = params['vocab_size'] ''' Reading vocabulary dictionaries ''' indices_words_connector = DataConnector(preprocessed_v2, 'all_indices_words_fsoftmax.pkl', data=None) indices_words_connector.read_pickle() indices_words = indices_words_connector.read_file words_indices_connector = DataConnector(preprocessed_v2, 'all_words_indices_fsoftmax.pkl', data=None) words_indices_connector.read_pickle() words_indices = words_indices_connector.read_file y_test_true_connector = DataConnector(data_path, 'test_output_tokens.npy', data=None) y_test_true_connector.read_numpys() y_test_true = y_test_true_connector.read_file # paired data set X_pair_test_connector = DataConnector(preprocessed_data, 'x_pair_test_fsoftmax.npy', data=None) X_pair_test_connector.read_numpys() X_pair_test = X_pair_test_connector.read_file y_pair_test_in_connector = DataConnector(preprocessed_data, 'y_pair_test_in_fsoftmax.npy', data=None) y_pair_test_in_connector.read_numpys() y_pair_test_in = y_pair_test_in_connector.read_file y_pair_test_out_connector = DataConnector(preprocessed_data, 'y_pair_test_out_fsoftmax.npy', data=None) y_pair_test_out_connector.read_numpys() y_pair_test_out = y_pair_test_out_connector.read_file # non-paired data set X_test_connector = DataConnector(preprocessed_data, 'X_test_pad_fsoftmax.npy', data=None) X_test_connector.read_numpys() X_test = X_test_connector.read_file y_test_in_connector = DataConnector(preprocessed_data, 'y_test_in_fsoftmax.npy', data=None) y_test_in_connector.read_numpys() y_test_in = y_test_in_connector.read_file y_test_out_connector = DataConnector(preprocessed_data, 'y_test_out_fsoftmax.npy', data=None) y_test_out_connector.read_numpys() y_test_out = y_test_out_connector.read_file print("\n Non-paired test set: \n") sys.stdout.flush() print("X (input for encoder) shape: %s" % str(X_test.shape)) # input for encoder sys.stdout.flush() print("y_in (input for decoder) shape: %s" % str(y_test_in.shape)) # input for decoder sys.stdout.flush() print("y_out (output for decoder) shape: %s\n\n" % str(y_test_out.shape)) # output for decoder sys.stdout.flush() ''' Decoder model for inference stage Return: generated keyphrases ''' full_softmax = AttentionFullSoftmax(encoder_length=encoder_length, decoder_length=decoder_length, embedding_dim=embedding_dim, birnn_dim=birnn_dim, rnn_dim=rnn_dim, vocab_size=vocab_size, filepath=result_path, filename=file_name, batch_train_iter=None, batch_val_iter=None, batch_size=None, steps_epoch=None, val_steps=None, epochs=None) # skeleton of model architecture full_softmax.train_att_seq2seq() predict_softmax_model = full_softmax.predict_att_seq2seq(weights) encoder_model = full_softmax.encoder_model ''' Inference stage Model: layers from prediction model and decoder model Inference (text generation) approach: 1. One best search decoding (Greedy search): Return one best (top) probable word sequence, from joint probability of words within decoder time steps (decoder sequence length) 2. N-Beam search decoding: Return N-top best most probable word sequences, by utilizing beam tree search per time steps and joint probability within decoder time steps (decoder sequence length) ''' decoder_model = full_softmax.create_decoder_model() # transform tokenized y_true (ground truth of keyphrases) into full sentences / keyphrases keyphrases_transform = TrueKeyphrases(y_test_true) keyphrases_transform.get_true_keyphrases() keyphrases_transform.get_stat_keyphrases() y_true = keyphrases_transform.y_true max_kp_num = keyphrases_transform.max_kp_num mean_kp_num = keyphrases_transform.mean_kp_num std_kp_num = keyphrases_transform.std_kp_num print("Maximum number of key phrases per document in corpus: %s" % max_kp_num) sys.stdout.flush() print("Average number of key phrases per document in corpus: %s" % mean_kp_num) sys.stdout.flush() print( "Standard Deviation of number of key phrases per document in corpus: %s" % std_kp_num) sys.stdout.flush() # round up function for computing beam width def roundup(x): return x if x % 5 == 0 else x + 5 - x % 5 beam_width = int(roundup(mean_kp_num + (3 * std_kp_num))) print("\nBeam width: %s\n" % beam_width) sys.stdout.flush() num_hypotheses = beam_width s0_test = np.zeros((len(X_test), rnn_dim)) att0_test = np.zeros((len(X_test), encoder_length, 1)) print(str(datetime.now())) sys.stdout.flush() inference_mode = Decoding(encoder_model=encoder_model, decoder_model=decoder_model, indices_words=indices_words, words_indices=words_indices, enc_in_seq=None, states=None, attentions=None, decoder_length=decoder_length, rnn_dim=rnn_dim, beam_width=beam_width, num_hypotheses=num_hypotheses, filepath=decode_path, filename=file_name) t0_1 = time.time() print("Start beam decoding...") sys.stdout.flush() beam_keyphrases = inference_mode.beam_decoder(X_test[:500], s0_test[:500], att0_test[:500]) beam_decode_connector = DataConnector(decode_path, 'beam_kp-%s.npy' % (file_name), beam_keyphrases) beam_decode_connector.save_numpys() t1_1 = time.time() print("Beam decoding is done in %.3fsec" % (t1_1 - t0_1)) sys.stdout.flush()
def decoder(params): data_path = params['data_path'] kp20k_path = params['kp20k_path'] preprocessed_v2 = params['preprocessed_v2'] preprocessed_data = params['preprocessed_data'] decode_path = params['decode_path'] model_path = params['model_path'] result_path = params['result_path'] result_kp20k = params['result_kp20k'] file_name = params['file_name'] weights = params['weights'] encoder_length = params['encoder_length'] decoder_length = params['decoder_length'] max_sents = params['max_sents'] embedding_dim = params['embedding_dim'] birnn_dim = params['birnn_dim'] rnn_dim = params['rnn_dim'] vocab_size = params['vocab_size'] batch_size = params['batch_size'] epoch = params['epoch'] ''' Reading vocabulary dictionaries ''' indices_words_connector = DataConnector( preprocessed_v2, 'all_indices_words_sent_fsoftmax.pkl', data=None) indices_words_connector.read_pickle() indices_words = indices_words_connector.read_file words_indices_connector = DataConnector( preprocessed_v2, 'all_words_indices_sent_fsoftmax.pkl', data=None) words_indices_connector.read_pickle() words_indices = words_indices_connector.read_file ## merge all set into one test set for trained model train_outputs_conn = DataConnector(data_path, 'train_output_sent_tokens.npy', data=None) train_outputs_conn.read_numpys() train_outputs = train_outputs_conn.read_file valid_outputs_conn = DataConnector(data_path, 'val_output_sent_tokens.npy', data=None) valid_outputs_conn.read_numpys() valid_outputs = valid_outputs_conn.read_file test_outputs_conn = DataConnector(data_path, 'test_output_sent_tokens.npy', data=None) test_outputs_conn.read_numpys() test_outputs = test_outputs_conn.read_file y_test_true = np.concatenate((train_outputs, valid_outputs, test_outputs)) print("Ground truth of keyphrases shape: %s" % str(y_test_true.shape)) # input for encoder sys.stdout.flush() # non-paired data set X_train_connector = DataConnector(preprocessed_data, 'X_train_pad_sent_fsoftmax.npy', data=None) X_train_connector.read_numpys() X_train = X_train_connector.read_file X_valid_connector = DataConnector(preprocessed_data, 'X_valid_pad_sent_fsoftmax.npy', data=None) X_valid_connector.read_numpys() X_valid = X_valid_connector.read_file X_test_connector = DataConnector(preprocessed_data, 'X_test_pad_sent_fsoftmax.npy', data=None) X_test_connector.read_numpys() X_test = X_test_connector.read_file X_in = np.concatenate((X_train, X_valid, X_test)) print("\n Non-paired test set: \n") sys.stdout.flush() print("X (input for encoder) shape: %s" % str(X_in.shape)) # input for encoder sys.stdout.flush() ''' Decoder model for inference stage Return: generated keyphrases ''' full_softmax = HierarchyAttFullSoftmax(encoder_length=encoder_length, decoder_length=decoder_length, max_sents=max_sents, embedding_dim=embedding_dim, birnn_dim=birnn_dim, rnn_dim=rnn_dim, vocab_size=vocab_size, filepath=result_kp20k, filename=file_name, batch_train_iter=None, batch_val_iter=None, batch_size=None, steps_epoch=None, val_steps=None, epochs=None) # skeleton of model architecture full_softmax.train_hier_att_seq2seq() full_softmax.predict_hier_att(weights) encoder_model = full_softmax.encoder_model # 1. Prediction model after being trained on sampled softmax setting predict_softmax_model = full_softmax.prediction_model decoder_model = full_softmax.create_decoder_model() # transform tokenized y_true (ground truth of keyphrases) into full sentences / keyphrases keyphrases_transform = TrueKeyphrases(y_test_true) keyphrases_transform.get_true_keyphrases() keyphrases_transform.get_stat_keyphrases() y_true = keyphrases_transform.y_true max_kp_num = keyphrases_transform.max_kp_num mean_kp_num = keyphrases_transform.mean_kp_num std_kp_num = keyphrases_transform.std_kp_num print("Maximum number of key phrases per document in corpus: %s" % max_kp_num) sys.stdout.flush() print("Average number of key phrases per document in corpus: %s" % mean_kp_num) sys.stdout.flush() print( "Standard Deviation of number of key phrases per document in corpus: %s" % std_kp_num) sys.stdout.flush() # round up function for computing beam width def roundup(x): return x if x % 5 == 0 else x + 5 - x % 5 beam_width = int(roundup(mean_kp_num + (3 * std_kp_num))) num_hypotheses = beam_width print("\nBeam width: %s\n" % beam_width) sys.stdout.flush() s0_test = np.zeros((len(X_in), rnn_dim)) att0_test = np.zeros((len(X_in), encoder_length, 1)) print(str(datetime.now())) sys.stdout.flush() inference_mode = Decoding(encoder_model=encoder_model, decoder_model=decoder_model, indices_words=indices_words, words_indices=words_indices, enc_in_seq=None, states=None, attentions=None, decoder_length=decoder_length, rnn_dim=rnn_dim, beam_width=beam_width, num_hypotheses=num_hypotheses, filepath=decode_path, filename=file_name) t0_1 = time.time() print("Start beam decoding...") sys.stdout.flush() beam_keyphrases = inference_mode.beam_decoder(X_in[:500], s0_test[:500], att0_test[:500]) beam_decode_connector = DataConnector(decode_path, 'beam_kp-hier-%s.npy' % (file_name), beam_keyphrases) beam_decode_connector.save_numpys() t1_1 = time.time() print("Beam decoding is done in %.3fsec" % (t1_1 - t0_1)) sys.stdout.flush()