def initialize_ae_diagnostics(self, n_epochs): """ initialize diagnostic variables for autoencoder network. """ self.train_time = 0 self.test_time = 0 self.best_weight_dict = None # data-dependent diagnostics for train, validation, and test set self.diag['train'] = NNetDataDiag(n_epochs=n_epochs, n_samples=self.data.n_train) self.diag['val'] = NNetDataDiag(n_epochs=n_epochs, n_samples=self.data.n_val) self.diag['test'] = NNetDataDiag(n_epochs=n_epochs, n_samples=self.data.n_test) # network parameters self.diag['network'] = {} self.diag['network']['l2_penalty'] = np.zeros(n_epochs, dtype=Cfg.floatX)
def initialize_diagnostics(self, n_epochs): """ initialize diagnostics for the neural network """ # data-dependent diagnostics for train, validation, and test set self.diag['train'] = NNetDataDiag(n_epochs=n_epochs, n_samples=self.data.n_train) self.diag['val'] = NNetDataDiag(n_epochs=n_epochs, n_samples=self.data.n_val) self.diag['test'] = NNetDataDiag(n_epochs=n_epochs, n_samples=self.data.n_test) # network parameter diagnostics self.diag['network'] = NNetParamDiag(self, n_epochs=n_epochs) # Best results (highest AUC on test set) self.auc_best = 0 self.auc_best_epoch = 0 # determined by highest AUC on test set self.best_weight_dict = None