예제 #1
0
    def initialize_ae_diagnostics(self, n_epochs):
        """
        initialize diagnostic variables for autoencoder network.
        """

        self.train_time = 0
        self.test_time = 0
        self.best_weight_dict = None

        # data-dependent diagnostics for train, validation, and test set
        self.diag['train'] = NNetDataDiag(n_epochs=n_epochs, n_samples=self.data.n_train)
        self.diag['val'] = NNetDataDiag(n_epochs=n_epochs, n_samples=self.data.n_val)
        self.diag['test'] = NNetDataDiag(n_epochs=n_epochs, n_samples=self.data.n_test)

        # network parameters
        self.diag['network'] = {}
        self.diag['network']['l2_penalty'] = np.zeros(n_epochs, dtype=Cfg.floatX)
예제 #2
0
    def initialize_diagnostics(self, n_epochs):
        """
        initialize diagnostics for the neural network
        """

        # data-dependent diagnostics for train, validation, and test set
        self.diag['train'] = NNetDataDiag(n_epochs=n_epochs, n_samples=self.data.n_train)
        self.diag['val'] = NNetDataDiag(n_epochs=n_epochs, n_samples=self.data.n_val)
        self.diag['test'] = NNetDataDiag(n_epochs=n_epochs, n_samples=self.data.n_test)

        # network parameter diagnostics
        self.diag['network'] = NNetParamDiag(self, n_epochs=n_epochs)

        # Best results (highest AUC on test set)
        self.auc_best = 0
        self.auc_best_epoch = 0  # determined by highest AUC on test set
        self.best_weight_dict = None