예제 #1
0
def get_optimizer(model, hps):
    # Optimizer
    betas = (hps.beta1, hps.beta2)
    if hps.fp16_opt:
        opt = FP16FusedAdam(model.parameters(),
                            lr=hps.lr,
                            weight_decay=hps.weight_decay,
                            betas=betas,
                            eps=hps.eps)
    else:
        opt = FusedAdam(model.parameters(),
                        lr=hps.lr,
                        weight_decay=hps.weight_decay,
                        betas=betas,
                        eps=hps.eps)

    # lr scheduler
    shd = get_lr_scheduler(opt, hps)

    restore_path = hps.restore_prior if hps.prior else hps.restore_vqvae
    restore_opt(opt, shd, restore_path)

    # fp16 dynamic loss scaler
    scalar = None
    if hps.fp16:
        rank = dist.get_rank()
        local_rank = rank % 8
        scalar = LossScalar(hps.fp16_loss_scale,
                            scale_factor=2**(1. / hps.fp16_scale_window))
        if local_rank == 0: print(scalar.__dict__)

    zero_grad(model)
    return opt, shd, scalar
예제 #2
0
def get_ddp(model, hps):
    rank = dist.get_rank()
    local_rank = rank % 8
    ddp = DistributedDataParallel(model,
                                  device_ids=[local_rank],
                                  output_device=local_rank,
                                  broadcast_buffers=False,
                                  bucket_cap_mb=hps.bucket)
    return ddp
예제 #3
0
    def init_dataset(self, hps):
        # Load list of files and starts/durations
        files = librosa.util.find_files(f'{hps.audio_files_dir}', ['mp3', 'opus', 'm4a', 'aac', 'wav'])
        print_all(f"Found {len(files)} files. Getting durations")
        cache = dist.get_rank() % 8 == 0 if dist.is_available() else True
        durations = np.array([get_duration_sec(file, cache=cache) * self.sr for file in files])  # Could be approximate
        self.filter(files, durations)

        if self.labels:
            self.labeller = Labeller(hps.max_bow_genre_size, hps.n_tokens, self.sample_length, v3=hps.labels_v3)
예제 #4
0
 def lr_lambda(step):
     if hps.lr_use_linear_decay:
         lr_scale = hps.lr_scale * min(1.0, step / hps.lr_warmup)
         decay = max(
             0.0, 1.0 -
             max(0.0, step - hps.lr_start_linear_decay) / hps.lr_decay)
         if decay == 0.0:
             if dist.get_rank() == 0:
                 print("Reached end of training")
         return lr_scale * decay
     else:
         return hps.lr_scale * (hps.lr_gamma**(step // hps.lr_decay)) * min(
             1.0, step / hps.lr_warmup)
예제 #5
0
def get_ema(model, hps):
    mu = hps.mu or (1. - (hps.bs * hps.ngpus / 8.) / 1000)
    ema = None
    if hps.ema and hps.train:
        if hps.cpu_ema:
            if dist.get_rank() == 0:
                print("Using CPU EMA")
            ema = CPUEMA(model.parameters(), mu=mu, freq=hps.cpu_ema_freq)
        elif hps.ema_fused:
            ema = FusedEMA(model.parameters(), mu=mu)
        else:
            ema = EMA(model.parameters(), mu=mu)
    return ema
예제 #6
0
def load_checkpoint(path):
    restore = path
    if restore[:5] == 'gs://':
        gs_path = restore
        local_path = os.path.join(os.path.expanduser("~/.cache"), gs_path[5:])
        if dist.get_rank() % 8 == 0:
            print("Downloading from gce")
            if not os.path.exists(os.path.dirname(local_path)):
                os.makedirs(os.path.dirname(local_path))
            if not os.path.exists(local_path):
                download(gs_path, local_path)
        restore = local_path
    dist.barrier()
    checkpoint = t.load(restore, map_location=t.device('cpu'))
    print("Restored from {}".format(restore))
    return checkpoint
예제 #7
0
def _setup_dist_from_mpi(master_addr, backend, port, n_attempts, verbose):
    from mpi4py import MPI  # This must be imported in order to get e   rrors from all ranks to show up

    mpi_rank = MPI.COMM_WORLD.Get_rank()
    mpi_size = MPI.COMM_WORLD.Get_size()

    os.environ["RANK"] = str(mpi_rank)
    os.environ["WORLD_SIZE"] = str(mpi_size)
    os.environ["MASTER_ADDR"] = master_addr
    os.environ["MASTER_PORT"] = str(port)
    os.environ["NCCL_LL_THRESHOLD"] = "0"
    os.environ["NCCL_NSOCKS_PERTHREAD"] = "2"
    os.environ["NCCL_SOCKET_NTHREADS"] = "8"

    # Pin this rank to a specific GPU on the node
    local_rank = mpi_rank % 8
    if torch.cuda.is_available():
        torch.cuda.set_device(local_rank)

    if verbose:
        print(f"Connecting to master_addr: {master_addr}")

    # There is a race condition when initializing NCCL with a large number of ranks (e.g 500 ranks)
    # We guard against the failure and then retry
    for attempt_idx in range(n_attempts):
        try:
            dist.init_process_group(backend=backend, init_method=f"env://")
            assert dist.get_rank() == mpi_rank

            use_cuda = torch.cuda.is_available()
            print(f'Using cuda {use_cuda}')
            local_rank = mpi_rank % 8
            device = torch.device(
                "cuda", local_rank) if use_cuda else torch.device("cpu")
            torch.cuda.set_device(local_rank)

            return mpi_rank, local_rank, device
        except RuntimeError as e:
            print(
                f"Caught error during NCCL init (attempt {attempt_idx} of {n_attempts}): {e}"
            )
            sleep(1 + (0.01 * mpi_rank))  # Sleep to avoid thundering herd
            pass

    raise RuntimeError("Failed to initialize NCCL")
예제 #8
0
 def __init__(self, n_in, n_depth, m_conv=1.0, dilation_growth_rate=1, dilation_cycle=None, zero_out=False, res_scale=False, reverse_dilation=False, checkpoint_res=False):
     super().__init__()
     def _get_depth(depth):
         if dilation_cycle is None:
             return depth
         else:
             return depth % dilation_cycle
     blocks = [ResConv1DBlock(n_in, int(m_conv * n_in),
                              dilation=dilation_growth_rate ** _get_depth(depth),
                              zero_out=zero_out,
                              res_scale=1.0 if not res_scale else 1.0 / math.sqrt(n_depth))
               for depth in range(n_depth)]
     if reverse_dilation:
         blocks = blocks[::-1]
     self.checkpoint_res = checkpoint_res
     if self.checkpoint_res == 1:
         if dist.get_rank() == 0:
             print("Checkpointing convs")
         self.blocks = nn.ModuleList(blocks)
     else:
         self.model = nn.Sequential(*blocks)
예제 #9
0
def calculate_bandwidth(dataset, hps, duration=600):
    hps = DefaultSTFTValues(hps)
    n_samples = int(dataset.sr * duration)
    l1, total, total_sq, n_seen, idx = 0.0, 0.0, 0.0, 0.0, dist.get_rank()
    spec_norm_total, spec_nelem = 0.0, 0.0
    while n_seen < n_samples:
        x = dataset[idx]
        if isinstance(x, (tuple, list)):
            x, y = x
        samples = x.astype(np.float64)
        stft = librosa.core.stft(np.mean(samples, axis=1),
                                 hps.n_fft,
                                 hop_length=hps.hop_length,
                                 win_length=hps.window_size)
        spec = np.absolute(stft)
        spec_norm_total += np.linalg.norm(spec)
        spec_nelem += 1
        n_seen += int(np.prod(samples.shape))
        l1 += np.sum(np.abs(samples))
        total += np.sum(samples)
        total_sq += np.sum(samples**2)
        idx += max(16, dist.get_world_size())

    if dist.is_available():
        #from jukebox.utils.dist_utils import allreduce
        from utils.dist_utils import allreduce
        n_seen = allreduce(n_seen)
        total = allreduce(total)
        total_sq = allreduce(total_sq)
        l1 = allreduce(l1)
        spec_nelem = allreduce(spec_nelem)
        spec_norm_total = allreduce(spec_norm_total)

    mean = total / n_seen
    bandwidth = dict(l2=total_sq / n_seen - mean**2,
                     l1=l1 / n_seen,
                     spec=spec_norm_total / spec_nelem)
    print_once(bandwidth)
    return bandwidth
예제 #10
0
def print_once(msg):
    if (not dist.is_available()) or dist.get_rank() == 0:
        print(msg)
예제 #11
0
def print_all(msg):
    if (not dist.is_available()):
        print(msg)
    elif dist.get_rank() % 8 == 0:
        print(f'{dist.get_rank()//8}: {msg}')
예제 #12
0
def train(model, orig_model, opt, shd, scalar, ema, logger, metrics,
          data_processor, hps):
    model.train()
    orig_model.train()
    if hps.prior:
        _print_keys = dict(l="loss",
                           bpd="bpd",
                           gn="gn",
                           g_l="gen_loss",
                           p_l="prime_loss")
    else:
        _print_keys = dict(l="loss",
                           sl="spectral_loss",
                           rl="recons_loss",
                           e="entropy",
                           u="usage",
                           uc="used_curr",
                           gn="gn",
                           pn="pn",
                           dk="dk")

    for i, x in logger.get_range(data_processor.train_loader):
        if isinstance(x, (tuple, list)):
            x, y = x
        else:
            y = None

        x = x.to('cuda', non_blocking=True)
        if y is not None:
            y = y.to('cuda', non_blocking=True)

        x_in = x = audio_preprocess(x, hps)
        log_input_output = (logger.iters % hps.save_iters == 0)

        if hps.prior:
            forw_kwargs = dict(y=y, fp16=hps.fp16, decode=log_input_output)
        else:
            forw_kwargs = dict(loss_fn=hps.loss_fn, hps=hps)

        # Forward
        x_out, loss, _metrics = model(x, **forw_kwargs)

        # Backward
        loss, scale, grad_norm, overflow_loss, overflow_grad = backward(
            loss=loss,
            params=list(model.parameters()),
            scalar=scalar,
            fp16=hps.fp16,
            logger=logger)
        # Skip step if overflow
        grad_norm = allreduce(grad_norm, op=dist.ReduceOp.MAX)
        if overflow_loss or overflow_grad or grad_norm > hps.ignore_grad_norm > 0:
            zero_grad(orig_model)
            continue

        # Step opt. Divide by scale to include clipping and fp16 scaling
        logger.step()
        opt.step(scale=clipped_grad_scale(grad_norm, hps.clip, scale))
        zero_grad(orig_model)
        lr = hps.lr if shd is None else shd.get_lr()[0]
        if shd is not None: shd.step()
        if ema is not None: ema.step()
        next_lr = hps.lr if shd is None else shd.get_lr()[0]
        finished_training = (next_lr == 0.0)

        # Logging
        for key, val in _metrics.items():
            _metrics[key] = val.item()
        _metrics["loss"] = loss = loss.item(
        ) * hps.iters_before_update  # Make sure to call to free graph
        _metrics["gn"] = grad_norm
        _metrics["lr"] = lr
        _metrics["lg_loss_scale"] = np.log2(scale)

        # Average and log
        for key, val in _metrics.items():
            _metrics[key] = metrics.update(key, val, x.shape[0])
            if logger.iters % hps.log_steps == 0:
                logger.add_scalar(key, _metrics[key])

        # Save checkpoint
        with t.no_grad():
            if hps.save and (logger.iters % hps.save_iters == 1
                             or finished_training):
                if ema is not None: ema.swap()
                orig_model.eval()
                name = 'latest' if hps.prior else f'step_{logger.iters}'
                if dist.get_rank() % 8 == 0:
                    save_checkpoint(logger, name, orig_model, opt,
                                    dict(step=logger.iters), hps)
                orig_model.train()
                if ema is not None: ema.swap()

        # Sample
        with t.no_grad():
            if (logger.iters % 12000) in list(
                    range(1,
                          1 + hps.iters_before_update)) or finished_training:
                if hps.prior:
                    sample_prior(orig_model, ema, logger, x_in, y, hps)

        # Input/Output
        with t.no_grad():
            if log_input_output:
                log_inputs(orig_model, logger, x_in, y, x_out, hps)

        logger.set_postfix(**{
            print_key: _metrics[key]
            for print_key, key in _print_keys.items()
        })
        if finished_training:
            dist.barrier()
            exit()
    logger.close_range()
    return {key: metrics.avg(key) for key in _metrics.keys()}
예제 #13
0
def get_range(x):
    if dist.get_rank() == 0:
        return def_tqdm(x)
    else:
        return x