#################################################################################################################### # build results for od-centered with OD model print('* Instantiating model {}, pretrained={}'.format( model_name, pretrained)) model, mean, std = get_arch(model_name, pretrained=pretrained, n_classes=n_classes) model, stats = load_model(model, load_path_od, device='cpu') model = model.to(device) print("Total params: {0:,}".format( sum(p.numel() for p in model.parameters() if p.requires_grad))) print('* Creating Dataloaders, batch size = {:d}'.format(bs)) test_loader = get_test_loader(csv_path_test=csv_test_od, batch_size=bs, mean=mean, std=std) if tta: probs_od, preds_od, labels = test_cls_tta_dihedral(model, test_loader, n=3) else: probs_od, preds_od, labels = test_cls(model, test_loader) df_od = pd.DataFrame(zip(list(test_loader.dataset.im_list), preds_od), columns=['image_id', 'preds']) #################################################################################################################### # build results for macula-centered with MAC model print('* Instantiating model {}, pretrained={}'.format( model_name, pretrained)) model, mean, std = get_arch(model_name,
# build results for MT model n_classes = 18 print('* Instantiating MT model {}, pretrained={}'.format( model_name_MT, pretrained)) model, mean, std = get_arch(model_name_MT, pretrained=pretrained, n_classes=n_classes) model, stats = load_model(model, load_path_MT, device='cpu') model = model.to(device) print("Total params: {0:,}".format( sum(p.numel() for p in model.parameters() if p.requires_grad))) print('* Creating Dataloaders, batch size = {:d}'.format(bs)) test_loader = get_test_loader(csv_path_test=csv_test_q_MT, batch_size=bs, mean=mean, std=std, qualities=True) probs_tta_q, preds_tta_q, probs_tta_a, preds_tta_a, probs_tta_c, preds_tta_c, probs_tta_f, preds_tta_f \ = test_cls_tta_dihedral_MT(model, test_loader, n=3) #################################################################################################################### # build results for QUALITY model n_classes = 2 print('* Instantiating QUALITY model {}, pretrained={}'.format( model_name_quality, pretrained)) model, mean, std = get_arch(model_name_quality, pretrained=pretrained, n_classes=n_classes)