예제 #1
0
    def process(sample, sample_process_options, output_sample_types, debug):
        source = sample.load_bgr()
        h, w, c = source.shape

        is_face_sample = sample.landmarks is not None

        if debug and is_face_sample:
            LandmarksProcessor.draw_landmarks(source, sample.landmarks,
                                              (0, 1, 0))

        params = image_utils.gen_warp_params(
            source,
            sample_process_options.random_flip,
            rotation_range=sample_process_options.rotation_range,
            scale_range=sample_process_options.scale_range,
            tx_range=sample_process_options.tx_range,
            ty_range=sample_process_options.ty_range)

        images = [[None] * 3 for _ in range(4)]

        sample_rnd_seed = np.random.randint(0x80000000)

        outputs = []
        for sample_type in output_sample_types:
            f = sample_type[0]
            size = sample_type[1]
            random_sub_size = 0 if len(sample_type) < 3 else min(
                sample_type[2], size)

            if f & SampleProcessor.TypeFlags.SOURCE != 0:
                img_type = 0
            elif f & SampleProcessor.TypeFlags.WARPED != 0:
                img_type = 1
            elif f & SampleProcessor.TypeFlags.WARPED_TRANSFORMED != 0:
                img_type = 2
            elif f & SampleProcessor.TypeFlags.TRANSFORMED != 0:
                img_type = 3
            else:
                raise ValueError('expected SampleTypeFlags type')

            face_mask_type = 0
            if f & SampleProcessor.TypeFlags.FACE_MASK_FULL != 0:
                face_mask_type = 1
            elif f & SampleProcessor.TypeFlags.FACE_MASK_EYES != 0:
                face_mask_type = 2

            target_face_type = -1
            if f & SampleProcessor.TypeFlags.FACE_ALIGN_HALF != 0:
                target_face_type = FaceType.HALF
            elif f & SampleProcessor.TypeFlags.FACE_ALIGN_FULL != 0:
                target_face_type = FaceType.FULL
            elif f & SampleProcessor.TypeFlags.FACE_ALIGN_HEAD != 0:
                target_face_type = FaceType.HEAD
            elif f & SampleProcessor.TypeFlags.FACE_ALIGN_AVATAR != 0:
                target_face_type = FaceType.AVATAR

            if images[img_type][face_mask_type] is None:
                img = source
                if is_face_sample:
                    if face_mask_type == 1:
                        img = np.concatenate(
                            (img,
                             LandmarksProcessor.get_image_hull_mask(
                                 source, sample.landmarks)), -1)
                    elif face_mask_type == 2:
                        mask = LandmarksProcessor.get_image_eye_mask(
                            source, sample.landmarks)
                        mask = np.expand_dims(
                            cv2.blur(mask, (w // 32, w // 32)), -1)
                        mask[mask > 0.0] = 1.0
                        img = np.concatenate((img, mask), -1)

                images[img_type][face_mask_type] = image_utils.warp_by_params(
                    params, img, (img_type == 1 or img_type == 2),
                    (img_type == 2 or img_type == 3), img_type != 0,
                    face_mask_type == 0)

            img = images[img_type][face_mask_type]

            if is_face_sample and target_face_type != -1:
                if target_face_type > sample.face_type:
                    raise Exception(
                        'sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.'
                        %
                        (sample.filename, sample.face_type, target_face_type))

                img = cv2.warpAffine(img,
                                     LandmarksProcessor.get_transform_mat(
                                         sample.landmarks, size,
                                         target_face_type), (size, size),
                                     flags=cv2.INTER_LANCZOS4)
            else:
                img = cv2.resize(img, (size, size), cv2.INTER_LANCZOS4)

            if random_sub_size != 0:
                sub_size = size - random_sub_size
                rnd_state = np.random.RandomState(sample_rnd_seed +
                                                  random_sub_size)
                start_x = rnd_state.randint(sub_size + 1)
                start_y = rnd_state.randint(sub_size + 1)
                img = img[start_y:start_y + sub_size,
                          start_x:start_x + sub_size, :]

            img_bgr = img[..., 0:3]
            img_mask = img[..., 3:4]

            if f & SampleProcessor.TypeFlags.MODE_BGR != 0:
                img = img
            elif f & SampleProcessor.TypeFlags.MODE_BGR_SHUFFLE != 0:
                img_bgr = np.take(img_bgr,
                                  np.random.permutation(img_bgr.shape[-1]),
                                  axis=-1)
                img = np.concatenate((img_bgr, img_mask), -1)
            elif f & SampleProcessor.TypeFlags.MODE_G != 0:
                img = np.concatenate((np.expand_dims(
                    cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY), -1), img_mask),
                                     -1)
            elif f & SampleProcessor.TypeFlags.MODE_GGG != 0:
                img = np.concatenate((np.repeat(
                    np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),
                                   -1), (3, ), -1), img_mask), -1)
            elif is_face_sample and f & SampleProcessor.TypeFlags.MODE_M != 0:
                if face_mask_type == 0:
                    raise ValueError('no face_mask_type defined')
                img = img_mask
            else:
                raise ValueError('expected SampleTypeFlags mode')

            if not debug and sample_process_options.normalize_tanh:
                img = img * 2.0 - 1.0

            outputs.append(img)

        if debug:
            result = []

            for output in outputs:
                if output.shape[2] < 4:
                    result += [
                        output,
                    ]
                elif output.shape[2] == 4:
                    result += [
                        output[..., 0:3] * output[..., 3:4],
                    ]

            return result
        else:
            return outputs
예제 #2
0
    def process (sample, sample_process_options, output_sample_types, debug):
        sample_bgr = sample.load_bgr()
        h,w,c = sample_bgr.shape

        is_face_sample = sample.landmarks is not None 
        
        if debug and is_face_sample:
            LandmarksProcessor.draw_landmarks (sample_bgr, sample.landmarks, (0, 1, 0))
        
        close_sample = sample.close_target_list[ np.random.randint(0, len(sample.close_target_list)) ] if sample.close_target_list is not None else None
        close_sample_bgr = close_sample.load_bgr() if close_sample is not None else None
        
        if debug and close_sample_bgr is not None:
            LandmarksProcessor.draw_landmarks (close_sample_bgr, close_sample.landmarks, (0, 1, 0))        
        
        params = image_utils.gen_warp_params(sample_bgr, sample_process_options.random_flip, rotation_range=sample_process_options.rotation_range, scale_range=sample_process_options.scale_range, tx_range=sample_process_options.tx_range, ty_range=sample_process_options.ty_range )

        images = [[None]*3 for _ in range(30)]
        
        sample_rnd_seed = np.random.randint(0x80000000)
            
        outputs = []       
        for sample_type in output_sample_types:
            f = sample_type[0]
            size = sample_type[1]
            random_sub_size = 0 if len (sample_type) < 3 else min( sample_type[2] , size)
            
            if f & SampleProcessor.TypeFlags.SOURCE != 0:
                img_type = 0
            elif f & SampleProcessor.TypeFlags.WARPED != 0:
                img_type = 1
            elif f & SampleProcessor.TypeFlags.WARPED_TRANSFORMED != 0:
                img_type = 2
            elif f & SampleProcessor.TypeFlags.TRANSFORMED != 0:
                img_type = 3
            elif f & SampleProcessor.TypeFlags.LANDMARKS_ARRAY != 0:
                img_type = 4                
            else:
                raise ValueError ('expected SampleTypeFlags type')
                
            if f & SampleProcessor.TypeFlags.RANDOM_CLOSE != 0:
                img_type += 10
            elif f & SampleProcessor.TypeFlags.MORPH_TO_RANDOM_CLOSE != 0:
                img_type += 20
                
            face_mask_type = 0
            if f & SampleProcessor.TypeFlags.FACE_MASK_FULL != 0:
                face_mask_type = 1               
            elif f & SampleProcessor.TypeFlags.FACE_MASK_EYES != 0:
                face_mask_type = 2
                  
            target_face_type = -1
            if f & SampleProcessor.TypeFlags.FACE_ALIGN_HALF != 0:
                target_face_type = FaceType.HALF            
            elif f & SampleProcessor.TypeFlags.FACE_ALIGN_FULL != 0:
                target_face_type = FaceType.FULL
            elif f & SampleProcessor.TypeFlags.FACE_ALIGN_HEAD != 0:
                target_face_type = FaceType.HEAD
            elif f & SampleProcessor.TypeFlags.FACE_ALIGN_AVATAR != 0:
                target_face_type = FaceType.AVATAR
            
            if img_type == 4:
                l = sample.landmarks 
                l = np.concatenate ( [ np.expand_dims(l[:,0] / w,-1), np.expand_dims(l[:,1] / h,-1) ], -1 )
                l = np.clip(l, 0.0, 1.0)
                img = l
            else:                
                if images[img_type][face_mask_type] is None:
                    if img_type >= 10 and img_type <= 19: #RANDOM_CLOSE
                        img_type -= 10
                        img = close_sample_bgr
                        cur_sample = close_sample
                        
                    elif img_type >= 20 and img_type <= 29: #MORPH_TO_RANDOM_CLOSE
                        img_type -= 20
                        res = sample.shape[0]
                    
                        s_landmarks = sample.landmarks.copy()                    
                        d_landmarks = close_sample.landmarks.copy()                        
                        idxs = list(range(len(s_landmarks)))                        
                        #remove landmarks near boundaries
                        for i in idxs[:]:
                            s_l = s_landmarks[i]   
                            d_l = d_landmarks[i]
                            if s_l[0] < 5 or s_l[1] < 5 or s_l[0] >= res-5 or s_l[1] >= res-5 or \
                               d_l[0] < 5 or d_l[1] < 5 or d_l[0] >= res-5 or d_l[1] >= res-5:
                               idxs.remove(i)
                        #remove landmarks that close to each other in 5 dist
                        for landmarks in [s_landmarks, d_landmarks]:
                            for i in idxs[:]:
                                s_l = landmarks[i]
                                for j in idxs[:]:
                                    if i == j:
                                        continue
                                    s_l_2 = landmarks[j]
                                    diff_l = np.abs(s_l - s_l_2)
                                    if np.sqrt(diff_l.dot(diff_l)) < 5:
                                        idxs.remove(i)
                                        break                                    
                        s_landmarks = s_landmarks[idxs]
                        d_landmarks = d_landmarks[idxs]
                        s_landmarks = np.concatenate ( [s_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] ) 
                        d_landmarks = np.concatenate ( [d_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
                        img = image_utils.morph_by_points (sample_bgr, s_landmarks, d_landmarks)
                        cur_sample = close_sample
                    else:
                        img = sample_bgr
                        cur_sample = sample
                    
                    if is_face_sample:
                        if face_mask_type == 1:
                            img = np.concatenate( (img, LandmarksProcessor.get_image_hull_mask (img.shape, cur_sample.landmarks) ), -1 )                    
                        elif face_mask_type == 2:
                            mask = LandmarksProcessor.get_image_eye_mask (img.shape, cur_sample.landmarks)
                            mask = np.expand_dims (cv2.blur (mask, ( w // 32, w // 32 ) ), -1)
                            mask[mask > 0.0] = 1.0
                            img = np.concatenate( (img, mask ), -1 )               

                    images[img_type][face_mask_type] = image_utils.warp_by_params (params, img, (img_type==1 or img_type==2), (img_type==2 or img_type==3), img_type != 0, face_mask_type == 0)
                    
                img = images[img_type][face_mask_type]
                
                if is_face_sample and target_face_type != -1:
                    if target_face_type > sample.face_type:
                        raise Exception ('sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (sample.filename, sample.face_type, target_face_type) )
                    img = cv2.warpAffine( img, LandmarksProcessor.get_transform_mat (sample.landmarks, size, target_face_type), (size,size), flags=cv2.INTER_CUBIC )
                else:
                    img = cv2.resize( img, (size,size), cv2.INTER_CUBIC )
                    
                if random_sub_size != 0:
                    sub_size = size - random_sub_size                
                    rnd_state = np.random.RandomState (sample_rnd_seed+random_sub_size)
                    start_x = rnd_state.randint(sub_size+1)
                    start_y = rnd_state.randint(sub_size+1)
                    img = img[start_y:start_y+sub_size,start_x:start_x+sub_size,:]

                img_bgr  = img[...,0:3]
                img_mask = img[...,3:4]

                if f & SampleProcessor.TypeFlags.MODE_BGR != 0:
                    img = img
                elif f & SampleProcessor.TypeFlags.MODE_BGR_SHUFFLE != 0:
                    img_bgr = np.take (img_bgr, np.random.permutation(img_bgr.shape[-1]), axis=-1)
                    img = np.concatenate ( (img_bgr,img_mask) , -1 )
                elif f & SampleProcessor.TypeFlags.MODE_G != 0:
                    img = np.concatenate ( (np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1),img_mask) , -1 )
                elif f & SampleProcessor.TypeFlags.MODE_GGG != 0:
                    img = np.concatenate ( ( np.repeat ( np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1), (3,), -1), img_mask), -1)
                elif is_face_sample and f & SampleProcessor.TypeFlags.MODE_M != 0:
                    if face_mask_type== 0:
                        raise ValueError ('no face_mask_type defined')
                    img = img_mask
                else:
                    raise ValueError ('expected SampleTypeFlags mode')
         
                if not debug:
                    if sample_process_options.normalize_tanh:
                        img = np.clip (img * 2.0 - 1.0, -1.0, 1.0)
                    else:
                        img = np.clip (img, 0.0, 1.0)

            outputs.append ( img )

        if debug:
            result = []

            for output in outputs:
                if output.shape[2] < 4:
                    result += [output,]
                elif output.shape[2] == 4:
                    result += [output[...,0:3]*output[...,3:4],]

            return result            
        else:
            return outputs
예제 #3
0
    def onProcessSample(self, sample, debug):
        source = sample.load_bgr()
        h, w, c = source.shape

        is_face_sample = self.trainingdatatype >= TrainingDataType.FACE_BEGIN and self.trainingdatatype <= TrainingDataType.FACE_END

        if debug and is_face_sample:
            LandmarksProcessor.draw_landmarks(source, sample.landmarks,
                                              (0, 1, 0))

        params = image_utils.gen_warp_params(
            source,
            self.random_flip,
            rotation_range=self.rotation_range,
            scale_range=self.scale_range,
            tx_range=self.tx_range,
            ty_range=self.ty_range)

        images = [[None] * 3 for _ in range(4)]

        outputs = []
        for t, size in self.output_sample_types:
            if t & self.SampleTypeFlags.SOURCE != 0:
                img_type = 0
            elif t & self.SampleTypeFlags.WARPED != 0:
                img_type = 1
            elif t & self.SampleTypeFlags.WARPED_TRANSFORMED != 0:
                img_type = 2
            elif t & self.SampleTypeFlags.TRANSFORMED != 0:
                img_type = 3
            else:
                raise ValueError('expected SampleTypeFlags type')

            mask_type = 0
            if t & self.SampleTypeFlags.MASK_FULL != 0:
                mask_type = 1
            elif t & self.SampleTypeFlags.MASK_EYES != 0:
                mask_type = 2

            if images[img_type][mask_type] is None:
                img = source
                if is_face_sample:
                    if mask_type == 1:
                        img = np.concatenate(
                            (img,
                             LandmarksProcessor.get_image_hull_mask(
                                 source, sample.landmarks)), -1)
                    elif mask_type == 2:
                        mask = LandmarksProcessor.get_image_eye_mask(
                            source, sample.landmarks)
                        mask = np.expand_dims(
                            cv2.blur(mask, (w // 32, w // 32)), -1)
                        mask[mask > 0.0] = 1.0
                        img = np.concatenate((img, mask), -1)

                images[img_type][mask_type] = image_utils.warp_by_params(
                    params, img, (img_type == 1 or img_type == 2),
                    (img_type == 2 or img_type == 3), img_type != 0)

            img = images[img_type][mask_type]

            target_face_type = -1
            if t & self.SampleTypeFlags.HALF_FACE != 0:
                target_face_type = FaceType.HALF
            elif t & self.SampleTypeFlags.FULL_FACE != 0:
                target_face_type = FaceType.FULL
            elif t & self.SampleTypeFlags.HEAD_FACE != 0:
                target_face_type = FaceType.HEAD
            elif t & self.SampleTypeFlags.AVATAR_FACE != 0:
                target_face_type = FaceType.AVATAR
            elif t & self.SampleTypeFlags.MARK_ONLY_FACE != 0:
                target_face_type = FaceType.MARK_ONLY

            if is_face_sample and target_face_type != -1 and target_face_type != FaceType.MARK_ONLY:
                if target_face_type > sample.face_type:
                    raise Exception(
                        'sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.'
                        %
                        (sample.filename, sample.face_type, target_face_type))

                img = cv2.warpAffine(img,
                                     LandmarksProcessor.get_transform_mat(
                                         sample.landmarks, size,
                                         target_face_type), (size, size),
                                     flags=cv2.INTER_LANCZOS4)
            else:
                img = cv2.resize(img, (size, size), cv2.INTER_LANCZOS4)

            img_bgr = img[..., 0:3]
            img_mask = img[..., 3:4]

            if t & self.SampleTypeFlags.MODE_BGR != 0:
                img = img
            elif t & self.SampleTypeFlags.MODE_BGR_SHUFFLE != 0:
                img_bgr = np.take(img_bgr,
                                  np.random.permutation(img_bgr.shape[-1]),
                                  axis=-1)
                img = np.concatenate((img_bgr, img_mask), -1)
            elif t & self.SampleTypeFlags.MODE_G != 0:
                img = np.concatenate((np.expand_dims(
                    cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY), -1), img_mask),
                                     -1)
            elif t & self.SampleTypeFlags.MODE_GGG != 0:
                img = np.concatenate((np.repeat(
                    np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),
                                   -1), (3, ), -1), img_mask), -1)
            elif is_face_sample and t & self.SampleTypeFlags.MODE_M != 0:
                if mask_type == 0:
                    raise ValueError('no mask mode defined')
                img = img_mask
            else:
                raise ValueError('expected SampleTypeFlags mode')

            if not debug and self.normalize_tanh:
                img = img * 2.0 - 1.0

            outputs.append(img)

        if debug:
            result = ()

            for output in outputs:
                if output.shape[2] < 4:
                    result += (output, )
                elif output.shape[2] == 4:
                    result += (output[..., 0:3] * output[..., 3:4], )

            return result
        else:
            return outputs