예제 #1
0
파일: demo.py 프로젝트: wecacuee/StarMap
def main():
    opt = opts().parse()
    model = torch.load(opt.loadModel)
    img = cv2.imread(opt.demo)
    s = max(img.shape[0], img.shape[1]) * 1.0
    c = np.array([img.shape[1] / 2., img.shape[0] / 2.])
    img = Crop(img, c, s, 0, ref.inputRes) / 256.
    input = torch.from_numpy(img.copy()).float()
    input = input.view(1, input.size(0), input.size(1), input.size(2))
    input_var = torch.autograd.Variable(input).float()
    if opt.GPU > -1:
        model = model.cuda(opt.GPU)
        input_var = input_var.cuda(opt.GPU)

    output = model(input_var)
    hm = output[-1].data.cpu().numpy()

    debugger = Debugger()
    img = (input[0].numpy().transpose(1, 2, 0) * 256).astype(np.uint8).copy()
    inp = img.copy()
    star = (cv2.resize(hm[0, 0], (ref.inputRes, ref.inputRes)) * 255)
    star[star > 255] = 255
    star[star < 0] = 0
    star = np.tile(star, (3, 1, 1)).transpose(1, 2, 0)
    trans = 0.8
    star = (trans * star + (1. - trans) * img).astype(np.uint8)

    ps = parseHeatmap(hm[0], thresh=0.1)
    canonical, pred, color, score = [], [], [], []
    for k in range(len(ps[0])):
        x, y, z = ((hm[0, 1:4, ps[0][k], ps[1][k]] + 0.5) *
                   ref.outputRes).astype(np.int32)
        dep = ((hm[0, 4, ps[0][k], ps[1][k]] + 0.5) * ref.outputRes).astype(
            np.int32)
        canonical.append([x, y, z])
        pred.append([ps[1][k], ref.outputRes - dep, ref.outputRes - ps[0][k]])
        score.append(hm[0, 0, ps[0][k], ps[1][k]])
        color.append((1.0 * x / ref.outputRes, 1.0 * y / ref.outputRes,
                      1.0 * z / ref.outputRes))
        cv2.circle(img, (ps[1][k] * 4, ps[0][k] * 4), 4, (255, 255, 255), -1)
        cv2.circle(img, (ps[1][k] * 4, ps[0][k] * 4), 2,
                   (int(z * 4), int(y * 4), int(x * 4)), -1)

    pred = np.array(pred).astype(np.float32)
    canonical = np.array(canonical).astype(np.float32)

    pointS = canonical * 1.0 / ref.outputRes
    pointT = pred * 1.0 / ref.outputRes
    R, t, s = horn87(pointS.transpose(), pointT.transpose(), score)

    rotated_pred = s * np.dot(
        R, canonical.transpose()).transpose() + t * ref.outputRes

    debugger.addImg(inp, 'inp')
    debugger.addImg(star, 'star')
    debugger.addImg(img, 'nms')
    debugger.addPoint3D(canonical / ref.outputRes - 0.5, c=color, marker='^')
    debugger.addPoint3D(pred / ref.outputRes - 0.5, c=color, marker='x')
    debugger.addPoint3D(rotated_pred / ref.outputRes - 0.5,
                        c=color,
                        marker='*')

    debugger.showAllImg(pause=True)
    debugger.show3D()
def main():

    # use the model trained with dropout enabled
    model_path = '/home/erl/moshan/orcvio_gamma/orcvio_gamma/pytorch_models/starmap/trained_models/with_dropout/model_cpu.pth'
    img_path = './images/car.png'
    det_name = './det/car.png'

    # by default img size is 256
    inputRes = 256
    outputRes = 64
    CUDA = torch.cuda.is_available()

    model = torch.load(model_path)

    img = cv2.imread(img_path)
    s = max(img.shape[0], img.shape[1]) * 1.0
    c = np.array([img.shape[1] / 2., img.shape[0] / 2.])

    # img = cv2.resize(img, (320, 240))
    # print(img.shape)

    # crop only change h, w, c to c, h, w for images with size 256 x 256
    img = Crop(img, c, s, 0, inputRes).astype(np.float32).transpose(2, 0,
                                                                    1) / 256.
    input = torch.from_numpy(img.copy()).float()

    # change to b, c, h, w
    input = input.view(1, input.size(0), input.size(1), input.size(2))
    input_var = torch.autograd.Variable(input).float()

    if CUDA:
        model.cuda()
        input_var = input_var.cuda()

    output = model(input_var)
    hm = output[-1].data.cpu().numpy()

    # convert to bgr, uint8 for display
    img = (input[0].numpy().transpose(1, 2, 0) * 256).astype(np.uint8).copy()
    inp = img.copy()

    # hm[0, 0] is an image, since 1st dim is batch
    star = (cv2.resize(hm[0, 0], (inputRes, inputRes)) * 255)

    # clip the values to 0-255
    star[star > 255] = 255
    star[star < 0] = 0

    # tile Construct an array by repeating A the number of times given by reps.
    # convert to 3 channels, for bgr
    star = np.tile(star, (3, 1, 1)).transpose(1, 2, 0)
    trans = 0.8
    star = (trans * star + (1. - trans) * img).astype(np.uint8)

    # select peaks and perform nms

    # set nms threshold
    heat_thresh = 0.25

    ps = parseHeatmap(hm[0], heat_thresh)
    canonical, pred, color, score = [], [], [], []

    # mc dropout
    f1 = plt.figure()
    ax1 = f1.add_subplot(111)
    ax1.imshow(img)
    uncertainty_test(model, input_var, heat_thresh, ax1)

    for k in range(len(ps[0])):
        # camviewfeature
        x, y, z = ((hm[0, 1:4, ps[0][k], ps[1][k]] + 0.5) * outputRes).astype(
            np.int32)
        dep = ((hm[0, 4, ps[0][k], ps[1][k]] + 0.5) * outputRes).astype(
            np.int32)
        canonical.append([x, y, z])

        pred.append([ps[1][k], outputRes - dep, outputRes - ps[0][k]])
        # kp confidence score
        score.append(hm[0, 0, ps[0][k], ps[1][k]])

        color.append(
            (1.0 * x / outputRes, 1.0 * y / outputRes, 1.0 * z / outputRes))

        # cv2.circle(img, center, radius, color[, thickness[, lineType[, shift]]]) → img
        # -1 means that a filled circle is to be drawn
        cv2.circle(img, (ps[1][k] * 4, ps[0][k] * 4), 6, (0, 0, 255), -1)
        cv2.circle(img, (ps[1][k] * 4, ps[0][k] * 4), 2,
                   (int(z * 4), int(y * 4), int(x * 4)), -1)

        # plot cov
        # pos = kps_mean[k]
        # covar = kps_cov[k]
        # draw_ellipse(pos, covar, ax1)

    plt.axis('off')
    ax1.get_xaxis().set_visible(False)
    ax1.get_yaxis().set_visible(False)
    plt.show()
    f1.savefig('kp_cov.png', bbox_inches='tight', pad_inches=0)
    # plt.pause(5)

    pred = np.array(pred).astype(np.float32)
    canonical = np.array(canonical).astype(np.float32)

    pointS = canonical * 1.0 / outputRes
    pointT = pred * 1.0 / outputRes

    # calculate viewpoint
    R, t, s = horn87(pointS.transpose(), pointT.transpose(), score)

    rotated_pred = s * np.dot(
        R, canonical.transpose()).transpose() + t * outputRes