예제 #1
0
def main(_):
    # TODO: split file support
    with tf.Graph().as_default():
        global save_model_dir
        start_epoch = 0
        global_counter = 0

        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=cfg.GPU_MEMORY_FRACTION,
            visible_device_list=cfg.GPU_AVAILABLE,
            allow_growth=True)
        config = tf.ConfigProto(
            gpu_options=gpu_options,
            device_count={
                "GPU": cfg.GPU_USE_COUNT,
            },
            allow_soft_placement=True,
        )
        with tf.Session(config=config) as sess:
            model = RPN3D(
                cls=cfg.DETECT_OBJ,
                single_batch_size=args.single_batch_size,
                learning_rate=args.lr,
                max_gradient_norm=5.0,
                alpha=args.alpha,
                beta=args.beta,
                avail_gpus=cfg.GPU_AVAILABLE  #.split(',')
            )
            # param init/restore
            if tf.train.get_checkpoint_state(save_model_dir):
                print("Reading model parameters from %s" % save_model_dir)
                model.saver.restore(sess,
                                    tf.train.latest_checkpoint(save_model_dir))
                start_epoch = model.epoch.eval() + 1
                global_counter = model.global_step.eval() + 1
            else:
                print("Created model with fresh parameters.")
                tf.global_variables_initializer().run()

            # train and validate
            is_summary, is_summary_image, is_validate = False, False, False

            summary_interval = 5
            summary_val_interval = 10
            summary_writer = tf.summary.FileWriter(log_dir, sess.graph)

            # training
            for epoch in range(start_epoch, args.max_epoch):
                counter = 0
                batch_time = time.time()
                for batch in iterate_data(train_dir,
                                          shuffle=True,
                                          aug=True,
                                          is_testset=False,
                                          batch_size=args.single_batch_size *
                                          cfg.GPU_USE_COUNT,
                                          multi_gpu_sum=cfg.GPU_USE_COUNT):

                    counter += 1
                    global_counter += 1

                    if counter % summary_interval == 0:
                        is_summary = True
                    else:
                        is_summary = False

                    start_time = time.time()
                    ret = model.train_step(sess,
                                           batch,
                                           train=True,
                                           summary=is_summary)
                    forward_time = time.time() - start_time
                    batch_time = time.time() - batch_time


                    print('train: {} @ epoch:{}/{} loss: {:.4f} reg_loss: {:.4f} cls_loss: {:.4f} cls_pos_loss: {:.4f} cls_neg_loss: {:.4f} forward time: {:.4f} batch time: {:.4f}'\
                            .format(counter,epoch, args.max_epoch, ret[0], ret[1], ret[2], ret[3], ret[4], forward_time, batch_time))

                    with open('log/train.txt', 'a') as f:
                        f.write(
                            'train: {} @ epoch:{}/{} loss: {:.4f} reg_loss: {:.4f} cls_loss: {:.4f} cls_pos_loss: {:.4f} cls_neg_loss: {:.4f} forward time: {:.4f} batch time: {:.4f} \n'
                            .format(counter, epoch, args.max_epoch, ret[0],
                                    ret[1], ret[2], ret[3], ret[4],
                                    forward_time, batch_time))

                    #print(counter, summary_interval, counter % summary_interval)
                    if counter % summary_interval == 0:
                        print("summary_interval now")
                        summary_writer.add_summary(ret[-1], global_counter)

                    #print(counter, summary_val_interval, counter % summary_val_interval)
                    if counter % summary_val_interval == 0:
                        print("summary_val_interval now")
                        batch = sample_test_data(
                            val_dir,
                            args.single_batch_size * cfg.GPU_USE_COUNT,
                            multi_gpu_sum=cfg.GPU_USE_COUNT)

                        ret = model.validate_step(sess, batch, summary=True)
                        summary_writer.add_summary(ret[-1], global_counter)

                        try:
                            ret = model.predict_step(sess, batch, summary=True)
                            summary_writer.add_summary(ret[-1], global_counter)
                        except:
                            print("prediction skipped due to error")

                    if check_if_should_pause(args.tag):
                        model.saver.save(sess,
                                         os.path.join(save_model_dir,
                                                      'checkpoint'),
                                         global_step=model.global_step)
                        print('pause and save model @ {} steps:{}'.format(
                            save_model_dir, model.global_step.eval()))
                        sys.exit(0)

                    batch_time = time.time()

                sess.run(model.epoch_add_op)

                model.saver.save(sess,
                                 os.path.join(save_model_dir, 'checkpoint'),
                                 global_step=model.global_step)

                # dump test data every 10 epochs
                if (epoch + 1) % 10 == 0:
                    # create output folder
                    os.makedirs(os.path.join(args.output_path, str(epoch)),
                                exist_ok=True)
                    os.makedirs(os.path.join(args.output_path, str(epoch),
                                             'data'),
                                exist_ok=True)
                    if args.vis:
                        os.makedirs(os.path.join(args.output_path, str(epoch),
                                                 'vis'),
                                    exist_ok=True)

                    for batch in iterate_data(
                            val_dir,
                            shuffle=False,
                            aug=False,
                            is_testset=False,
                            batch_size=args.single_batch_size *
                            cfg.GPU_USE_COUNT,
                            multi_gpu_sum=cfg.GPU_USE_COUNT):

                        if args.vis:
                            tags, results, front_images, bird_views, heatmaps = model.predict_step(
                                sess, batch, summary=False, vis=True)
                        else:
                            tags, results = model.predict_step(sess,
                                                               batch,
                                                               summary=False,
                                                               vis=False)

                        for tag, result in zip(tags, results):
                            of_path = os.path.join(args.output_path,
                                                   str(epoch), 'data',
                                                   tag + '.txt')
                            with open(of_path, 'w+') as f:
                                labels = box3d_to_label([result[:, 1:8]],
                                                        [result[:, 0]],
                                                        [result[:, -1]],
                                                        coordinate='lidar')[0]
                                for line in labels:
                                    f.write(line)
                                print('write out {} objects to {}'.format(
                                    len(labels), tag))
                        # dump visualizations
                        if args.vis:
                            for tag, front_image, bird_view, heatmap in zip(
                                    tags, front_images, bird_views, heatmaps):
                                front_img_path = os.path.join(
                                    args.output_path, str(epoch), 'vis',
                                    tag + '_front.jpg')
                                bird_view_path = os.path.join(
                                    args.output_path, str(epoch), 'vis',
                                    tag + '_bv.jpg')
                                heatmap_path = os.path.join(
                                    args.output_path, str(epoch), 'vis',
                                    tag + '_heatmap.jpg')
                                cv2.imwrite(front_img_path, front_image)
                                cv2.imwrite(bird_view_path, bird_view)
                                cv2.imwrite(heatmap_path, heatmap)

                    # execute evaluation code
                    cmd_1 = "./kitti_eval/launch_test.sh"
                    cmd_2 = os.path.join(args.output_path, str(epoch))
                    cmd_3 = os.path.join(args.output_path, str(epoch), 'log')
                    os.system(" ".join([cmd_1, cmd_2, cmd_3]))

            print('train done. total epoch:{} iter:{}'.format(
                epoch, model.global_step.eval()))

            # finallly save model
            model.saver.save(sess,
                             os.path.join(save_model_dir, 'checkpoint'),
                             global_step=model.global_step)
예제 #2
0
def main(_):

    with tf.Graph().as_default():

        start_epoch = 0
        global_counter = 0

        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=cfg.GPU_MEMORY_FRACTION,
            visible_device_list=cfg.GPU_AVAILABLE,
            allow_growth=True)

        config = tf.ConfigProto(
            gpu_options=gpu_options,
            device_count={
                "GPU": cfg.GPU_USE_COUNT,
            },
            allow_soft_placement=True,
        )

        with tf.Session(config=config) as sess:
            model = RPN3D(cls=cfg.DETECT_OBJ,
                          decrease=args.decrease,
                          minimize=args.minimize,
                          single_batch_size=args.single_batch_size,
                          learning_rate=args.lr,
                          max_gradient_norm=5.0,
                          alpha=args.alpha,
                          beta=args.beta,
                          avail_gpus=cfg.GPU_AVAILABLE.split(','))

            # param init/restore
            if tf.train.get_checkpoint_state(save_model_dir):
                print("Reading model parameters from %s" % save_model_dir)
                model.saver.restore(sess,
                                    tf.train.latest_checkpoint(save_model_dir))
                start_epoch = model.epoch.eval() + 1
                global_counter = model.global_step.eval() + 1
            else:
                print("Created model with fresh parameters.")
                tf.global_variables_initializer().run()

            # train and validate
            is_summary, is_summary_image, is_validate = False, False, False

            summary_interval = 5
            summary_val_interval = 10
            summary_writer = tf.summary.FileWriter(log_dir, sess.graph)

            # training
            for epoch in range(start_epoch, args.max_epoch):
                counter = 0
                batch_time = time.time()
                for batch in iterate_data(train_dir,
                                          shuffle=True,
                                          aug=True,
                                          is_testset=False,
                                          batch_size=args.single_batch_size *
                                          cfg.GPU_USE_COUNT,
                                          multi_gpu_sum=cfg.GPU_USE_COUNT):

                    counter += 1
                    global_counter += 1

                    if counter % summary_interval == 0:
                        is_summary = True
                    else:
                        is_summary = False

                    start_time = time.time()
                    ret = model.train_step(sess,
                                           batch,
                                           train=True,
                                           summary=is_summary)
                    forward_time = time.time() - start_time
                    batch_time = time.time() - batch_time

                    print(
                        'train: {} @ epoch:{}/{} loss: {:.4f} reg_loss: {:.4f} cls_loss: {:.4f} cls_pos_loss: {:.4f} cls_neg_loss: {:.4f} forward time: {:.4f} batch time: {:.4f}'
                        .format(counter, epoch + 1, args.max_epoch, ret[0],
                                ret[1], ret[2], ret[3], ret[4], forward_time,
                                batch_time))
                    with open(os.path.join('log', 'train.txt'), 'a') as f:
                        f.write(
                            'train: {} @ epoch:{}/{} loss: {:.4f} reg_loss: {:.4f} cls_loss: {:.4f} cls_pos_loss: {:.4f} cls_neg_loss: {:.4f} forward time: {:.4f} batch time: {:.4f} \n'
                            .format(counter, epoch + 1, args.max_epoch, ret[0],
                                    ret[1], ret[2], ret[3], ret[4],
                                    forward_time, batch_time))

                    if counter % summary_interval == 0:
                        print("summary_interval now")
                        summary_writer.add_summary(ret[-1], global_counter)

                    if counter % summary_val_interval == 0:
                        print("summary_val_interval now")
                        batch = sample_test_data(
                            val_dir,
                            args.single_batch_size * cfg.GPU_USE_COUNT,
                            multi_gpu_sum=cfg.GPU_USE_COUNT)

                        ret = model.validate_step(sess, batch, summary=True)
                        summary_writer.add_summary(ret[-1], global_counter)

                    if check_if_should_pause(args.tag):
                        model.saver.save(sess,
                                         os.path.join(save_model_dir,
                                                      'checkpoint'),
                                         global_step=model.global_step)
                        print('pause and save model @ {} steps:{}'.format(
                            save_model_dir, model.global_step.eval()))
                        sys.exit(0)

                    batch_time = time.time()

                sess.run(model.epoch_add_op)

                model.saver.save(sess,
                                 os.path.join(save_model_dir, 'checkpoint'),
                                 global_step=model.global_step)

                # dump test data every 10 epochs
                if (epoch + 1) % 10 == 0:
                    os.makedirs(os.path.join(res_dir, str(epoch)),
                                exist_ok=True)
                    os.makedirs(os.path.join(res_dir, str(epoch), 'data'),
                                exist_ok=True)

                    for batch in iterate_data(
                            val_dir,
                            shuffle=False,
                            aug=False,
                            is_testset=False,
                            batch_size=args.single_batch_size *
                            cfg.GPU_USE_COUNT,
                            multi_gpu_sum=cfg.GPU_USE_COUNT):

                        tags, results = model.predict_step(sess,
                                                           batch,
                                                           summary=False,
                                                           vis=False)

                        for tag, result in zip(tags, results):
                            of_path = os.path.join(res_dir, str(epoch), 'data',
                                                   tag + '.txt')
                            with open(of_path, 'w+') as f:
                                labels = box3d_to_label([result[:, 1:8]],
                                                        [result[:, 0]],
                                                        [result[:, -1]],
                                                        coordinate='lidar')[0]
                                for line in labels:
                                    f.write(line)
                                print('write out {} objects to {}'.format(
                                    len(labels), tag))

            # finally save model
            model.saver.save(sess,
                             os.path.join(save_model_dir, 'checkpoint'),
                             global_step=model.global_step)
예제 #3
0
파일: train.py 프로젝트: ywangeq/FL3D
def main():
    # load config
    train_dataset_dir = os.path.join(cfg.DATA_DIR, "training")
    val_dataset_dir = os.path.join(cfg.DATA_DIR, "validation")
    eval_dataset_dir = os.path.join(cfg.DATA_DIR, "validation")
    save_model_dir = os.path.join("./save_model", cfg.TAG)
    log_dir = os.path.join("./log", cfg.TAG)
    os.makedirs(log_dir, exist_ok=True)
    os.makedirs(save_model_dir, exist_ok=True)
    config = gpu_config()
    max_epoch = cfg.MAX_EPOCH

    # config logging
    logging.basicConfig(filename='./log/' + cfg.TAG + '/train.log',
                        level=logging.ERROR)
    copyfile("model/model.py",
             os.path.join(log_dir,
                          "model.py"))  # copyu model.py into log/$TAG/
    copyfile(
        "model/group_pointcloud.py",
        os.path.join(log_dir,
                     "group_pointcloud.py"))  # copyu model.py into log/$TAG/
    copyfile("model/rpn.py",
             os.path.join(log_dir, "rpn.py"))  # copy rpn.py into log/$TAG/
    copyfile("config.py",
             os.path.join(log_dir,
                          "config.py"))  # copy config.py into log/$TAG/

    print("tag: {}".format(cfg.TAG))
    logging.critical("tag: {}".format(cfg.TAG))
    with tf.Session(config=config) as sess:
        # load model
        model = RPN3D(cls=cfg.DETECT_OBJ,
                      single_batch_size=cfg.SINGLE_BATCH_SIZE,
                      is_training=True,
                      learning_rate=cfg.LR,
                      max_gradient_norm=5.0,
                      alpha=cfg.ALPHA,
                      beta=cfg.BETA,
                      gamma=cfg.GAMMA,
                      avail_gpus=cfg.GPU_AVAILABLE.split(','))
        saver = tf.train.Saver(write_version=tf.train.SaverDef.V2,
                               max_to_keep=10,
                               pad_step_number=True,
                               keep_checkpoint_every_n_hours=1.0)
        summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
        # param init/restore
        if not cfg.LOAD_CHECKPT == None:
            print("Reading model parameters from {}, {}".format(
                save_model_dir, cfg.LOAD_CHECKPT))
            logging.critical("Reading model parameters from {}, {}".format(
                save_model_dir, cfg.LOAD_CHECKPT))
            saver.restore(sess, os.path.join(save_model_dir, cfg.LOAD_CHECKPT))
            start_epoch = model.epoch.eval() + 1
        elif tf.train.get_checkpoint_state(save_model_dir):
            print("Reading model parameters from %s" % save_model_dir)
            logging.critical("Reading model parameters from %s" %
                             save_model_dir)
            saver.restore(sess, tf.train.latest_checkpoint(save_model_dir))
            start_epoch = model.epoch.eval() + 1
        else:
            print("Created model with fresh parameters.")
            logging.critical("Created model with fresh parameters.")
            tf.global_variables_initializer().run()
            start_epoch = 0

        # train
        for epoch in range(start_epoch, max_epoch):
            # load data
            data_generator_train = iterate_data(
                train_dataset_dir,
                shuffle=True,
                aug=False,
                is_testset=False,
                batch_size=cfg.SINGLE_BATCH_SIZE * cfg.GPU_USE_COUNT,
                multi_gpu_sum=cfg.GPU_USE_COUNT)
            data_generator_val = iterate_data(
                val_dataset_dir,
                shuffle=True,
                aug=False,
                is_testset=False,
                batch_size=cfg.SINGLE_BATCH_SIZE * cfg.GPU_USE_COUNT,
                multi_gpu_sum=cfg.GPU_USE_COUNT)
            for batch in data_generator_train:
                # train
                ret = model.train_step(sess, batch, train=True, summary=True)
                output_log(epoch,
                           model.global_step.eval(),
                           pos_cls_loss=ret[3],
                           neg_cls_loss=ret[4],
                           cls_loss=ret[2],
                           reg_loss=ret[1],
                           loss=ret[0],
                           phase="train",
                           logger=logging)
                summary_writer.add_summary(ret[-1], model.global_step.eval())
                if model.global_step.eval() % cfg.VALIDATE_INTERVAL == 0:
                    # val
                    val_batch = data_generator_val.__next__()
                    ret = model.validate_step(sess, val_batch, summary=True)
                    output_log(epoch,
                               model.global_step.eval(),
                               pos_cls_loss=ret[3],
                               neg_cls_loss=ret[4],
                               cls_loss=ret[2],
                               reg_loss=ret[1],
                               loss=ret[0],
                               phase="validation",
                               logger=logging)
                    summary_writer.add_summary(ret[-1],
                                               model.global_step.eval())
                    # eval
                    eval_batch = sample_test_data(
                        eval_dataset_dir,
                        cfg.SINGLE_BATCH_SIZE * cfg.GPU_USE_COUNT,
                        multi_gpu_sum=cfg.GPU_USE_COUNT)
                    try:
                        ret = model.predict_step(sess,
                                                 eval_batch,
                                                 summary=True)
                        summary_writer.add_summary(ret[-1],
                                                   model.global_step.eval())
                    except:
                        print("prediction skipped due to error")

            sess.run(model.epoch_add_op)
            model.saver.save(sess,
                             os.path.join(save_model_dir, 'checkpoint'),
                             global_step=model.global_step)
        print('{} Training Done!'.format(cfg.TAG))
        logging.critical('{} Training Done!'.format(cfg.TAG))
예제 #4
0
def main(_):
    global log_f
    timestr = time.strftime("%b-%d_%H-%M-%S", time.localtime())
    log_f = open('log/train_{}.txt'.format(timestr), 'w')
    log_print(str(cfg))
    # TODO: split file support
    with tf.Graph().as_default():
        global save_model_dir
        start_epoch = 0
        global_counter = 0

        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=cfg.GPU_MEMORY_FRACTION,
            visible_device_list=cfg.GPU_AVAILABLE,
            allow_growth=True)
        config = tf.ConfigProto(
            gpu_options=gpu_options,
            device_count={
                "GPU": cfg.GPU_USE_COUNT,
            },
            allow_soft_placement=True,
        )
        with tf.Session(config=config) as sess:
            model = RPN3D(cls=cfg.DETECT_OBJ,
                          single_batch_size=args.single_batch_size,
                          learning_rate=args.lr,
                          max_gradient_norm=5.0,
                          alpha=args.alpha,
                          beta=args.beta,
                          avail_gpus=cfg.GPU_AVAILABLE.split(','))
            # param init/restore
            if args.restore and tf.train.get_checkpoint_state(save_model_dir):
                log_print("Reading model parameters from %s" % save_model_dir)
                model.saver.restore(sess,
                                    tf.train.latest_checkpoint(save_model_dir))
                start_epoch = model.epoch.eval() + 1
                global_counter = model.global_step.eval() + 1
            else:
                log_print("Created model with fresh parameters.")
                tf.global_variables_initializer().run()

            if cfg.FEATURE_NET_TYPE == 'FeatureNet_AE' and cfg.FeatureNet_AE_WPATH:
                ae_checkpoint_file = tf.train.latest_checkpoint(
                    cfg.FeatureNet_AE_WPATH)
                log_print("Load Pretrained FeatureNet_AE weights %s" %
                          ae_checkpoint_file)
                ae_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                            scope='ae_encoder')
                ae_saver = tf.train.Saver(
                    var_list={v.op.name: v
                              for v in ae_vars})
                ae_saver.restore(sess, ae_checkpoint_file)
            if cfg.FEATURE_NET_TYPE == 'FeatureNet_VAE' and cfg.FeatureNet_VAE_WPATH:
                vae_checkpoint_file = tf.train.latest_checkpoint(
                    cfg.FeatureNet_VAE_WPATH)
                log_print("Load Pretrained FeatureNet_VAE weights %s" %
                          vae_checkpoint_file)
                vae_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                             scope='vae_encoder')
                vae_saver = tf.train.Saver(
                    var_list={v.op.name: v
                              for v in vae_vars})
                vae_saver.restore(sess, vae_checkpoint_file)

            # train and validate
            is_summary, is_summary_image, is_validate = False, False, False

            summary_interval = 5
            summary_val_interval = 20
            summary_writer = tf.summary.FileWriter(log_dir, sess.graph)

            parameter_num = np.sum(
                [np.prod(v.shape.as_list()) for v in tf.trainable_variables()])
            log_print('Parameter number: {}'.format(parameter_num))

            # training
            for epoch in range(start_epoch, args.max_epoch):
                counter = 0
                batch_time = time.time()
                for batch in iterate_data(train_dir,
                                          db_sampler=sampler,
                                          shuffle=True,
                                          aug=AUG_DATA,
                                          is_testset=False,
                                          batch_size=args.single_batch_size *
                                          cfg.GPU_USE_COUNT,
                                          multi_gpu_sum=cfg.GPU_USE_COUNT):
                    counter += 1
                    global_counter += 1

                    if counter % summary_interval == 0:
                        is_summary = True
                    else:
                        is_summary = False

                    start_time = time.time()
                    ret = model.train_step(sess,
                                           batch,
                                           train=True,
                                           summary=is_summary)
                    forward_time = time.time() - start_time
                    batch_time = time.time() - batch_time

                    log_print(
                        'train: {} @ epoch:{}/{} loss: {:.4f} reg_loss: {:.4f} cls_loss: {:.4f} cls_pos_loss: {:.4f} cls_neg_loss: {:.4f} forward time: {:.4f} batch time: {:.4f}'
                        .format(counter, epoch, args.max_epoch, ret[0], ret[1],
                                ret[2], ret[3], ret[4], forward_time,
                                batch_time),
                        write=is_summary)

                    #print(counter, summary_interval, counter % summary_interval)
                    if counter % summary_interval == 0:
                        log_print("summary_interval now")
                        summary_writer.add_summary(ret[-1], global_counter)

                    #print(counter, summary_val_interval, counter % summary_val_interval)
                    if counter % summary_val_interval == 0:
                        log_print("summary_val_interval now")
                        # Random sample single batch data
                        batch = sample_test_data(
                            val_dir,
                            args.single_batch_size * cfg.GPU_USE_COUNT,
                            multi_gpu_sum=cfg.GPU_USE_COUNT)

                        ret = model.validate_step(sess, batch, summary=True)
                        summary_writer.add_summary(ret[-1], global_counter)
                        log_print(
                            'validation: loss: {:.4f} reg_loss: {:.4f} cls_loss: {:.4f} '
                            .format(ret[0], ret[1], ret[2]))

                        with warnings.catch_warnings():
                            warnings.filterwarnings('error')
                            try:
                                ret = model.predict_step(sess,
                                                         batch,
                                                         summary=True)
                                summary_writer.add_summary(
                                    ret[-1], global_counter)
                            except:
                                log_print('prediction skipped due to error',
                                          'red')

                    if check_if_should_pause(args.tag):
                        model.saver.save(sess,
                                         os.path.join(save_model_dir, timestr),
                                         global_step=model.global_step)
                        log_print('pause and save model @ {} steps:{}'.format(
                            save_model_dir, model.global_step.eval()))
                        sys.exit(0)

                    batch_time = time.time()

                sess.run(model.epoch_add_op)

                model.saver.save(sess,
                                 os.path.join(save_model_dir, timestr),
                                 global_step=model.global_step)

                # dump test data every 10 epochs
                if (epoch + 1) % 10 == 0:
                    # create output folder
                    os.makedirs(os.path.join(args.output_path, str(epoch)),
                                exist_ok=True)
                    os.makedirs(os.path.join(args.output_path, str(epoch),
                                             'data'),
                                exist_ok=True)
                    if args.vis:
                        os.makedirs(os.path.join(args.output_path, str(epoch),
                                                 'vis'),
                                    exist_ok=True)

                    for batch in iterate_data(
                            val_dir,
                            shuffle=False,
                            aug=False,
                            is_testset=False,
                            batch_size=args.single_batch_size *
                            cfg.GPU_USE_COUNT,
                            multi_gpu_sum=cfg.GPU_USE_COUNT):
                        if args.vis:
                            tags, results, front_images, bird_views, heatmaps = model.predict_step(
                                sess, batch, summary=False, vis=True)
                        else:
                            tags, results = model.predict_step(sess,
                                                               batch,
                                                               summary=False,
                                                               vis=False)

                        for tag, result in zip(tags, results):
                            of_path = os.path.join(args.output_path,
                                                   str(epoch), 'data',
                                                   tag + '.txt')
                            with open(of_path, 'w+') as f:
                                P, Tr, R = load_calib(
                                    os.path.join(cfg.CALIB_DIR, tag + '.txt'))
                                labels = box3d_to_label([result[:, 1:8]],
                                                        [result[:, 0]],
                                                        [result[:, -1]],
                                                        coordinate='lidar',
                                                        P2=P,
                                                        T_VELO_2_CAM=Tr,
                                                        R_RECT_0=R)[0]
                                for line in labels:
                                    f.write(line)
                                log_print('write out {} objects to {}'.format(
                                    len(labels), tag))
                        # dump visualizations
                        if args.vis:
                            for tag, front_image, bird_view, heatmap in zip(
                                    tags, front_images, bird_views, heatmaps):
                                front_img_path = os.path.join(
                                    args.output_path, str(epoch), 'vis',
                                    tag + '_front.jpg')
                                bird_view_path = os.path.join(
                                    args.output_path, str(epoch), 'vis',
                                    tag + '_bv.jpg')
                                heatmap_path = os.path.join(
                                    args.output_path, str(epoch), 'vis',
                                    tag + '_heatmap.jpg')
                                cv2.imwrite(front_img_path, front_image)
                                cv2.imwrite(bird_view_path, bird_view)
                                cv2.imwrite(heatmap_path, heatmap)

                    # execute evaluation code
                    cmd_1 = "./kitti_eval/launch_test.sh"
                    cmd_2 = os.path.join(args.output_path, str(epoch))
                    cmd_3 = os.path.join(args.output_path, str(epoch), 'log')
                    os.system(" ".join([cmd_1, cmd_2, cmd_3]))

            log_print('train done. total epoch:{} iter:{}'.format(
                epoch, model.global_step.eval()))

            # finallly save model
            model.saver.save(sess,
                             os.path.join(save_model_dir, 'checkpoint'),
                             global_step=model.global_step)