예제 #1
0
def decode_test(session, decode_op, network, dataset, label_type, rate=1.0,
                is_multitask=False):
    """Visualize label outputs.
    Args:
        session: session of training model
        decode_op: operation for decoding
        network: network to evaluate
        dataset: Dataset class
        label_type: phone39 or phone48 or phone61 or character
        rate: rate of evaluation data to use
        is_multitask: if True, evaluate the multitask model
    """
    batch_size = 1
    num_examples = dataset.data_num * rate
    iteration = int(num_examples / batch_size)
    if (num_examples / batch_size) != int(num_examples / batch_size):
        iteration += 1

    map_file_path_phone = '../evaluation/mapping_files/ctc/phone2num_' + \
        label_type[5:7] + '.txt'
    map_file_path_char = '../evaluation/mapping_files/ctc/char2num.txt'
    for step in range(iteration):
        # Create feed dictionary for next mini batch
        inputs, labels_true, seq_len, input_names = dataset.next_batch(
            batch_size=batch_size)
        # if is_multitask:
        #     if label_type == 'character':
        #         labels_true = labels_true[0]
        #     else:
        #         labels_true = labels_true[1]

        feed_dict = {
            network.inputs_pl: inputs,
            network.seq_len_pl: seq_len,
            network.keep_prob_input_pl: 1.0,
            network.keep_prob_hidden_pl: 1.0
        }

        # Visualize
        batch_size_each = len(labels_true)
        labels_pred_st = session.run(decode_op, feed_dict=feed_dict)
        labels_pred = sparsetensor2list(labels_pred_st, batch_size_each)
        for i_batch in range(batch_size_each):
            if label_type == 'character':
                print('-----wav: %s-----' % input_names[i_batch])
                print('True: %s' % num2char(
                    labels_true[i_batch], map_file_path_char))
                print('Pred: %s' % num2char(
                    labels_pred[i_batch], map_file_path_char))

            else:
                # Decode test (39 phones)
                print('-----wav: %s-----' % input_names[i_batch])
                print('True: %s' % num2phone(
                    labels_true[i_batch], map_file_path_phone))

                print('Pred: %s' % num2phone(
                    labels_pred[i_batch], map_file_path_phone))
def decode_test(session,
                decode_op,
                network,
                dataset,
                label_type,
                save_path=None):
    """Visualize label outputs of CTC model.
    Args:
        session: session of training model
        decode_op: operation for decoding
        network: network to evaluate
        dataset: An instance of a `Dataset` class
        label_type: string, phone39 or phone48 or phone61 or character
        save_path: path to save decoding results
    """
    # Batch size is expected to be 1
    iteration = dataset.data_num

    # Make data generator
    mini_batch = dataset.next_batch(batch_size=1)

    if label_type == 'character':
        map_file_path = '../metric/mapping_files/ctc/char2num.txt'
    else:
        map_file_path = '../metric/mapping_files/ctc/phone2num_' + \
            label_type[5:7] + '.txt'

    if save_path is not None:
        sys.stdout = open(join(network.model_dir, 'decode.txt'), 'w')

    for step in range(iteration):
        # Create feed dictionary for next mini batch
        inputs, labels_true_st, inputs_seq_len, input_names = mini_batch.__next__(
        )

        feed_dict = {
            network.inputs: inputs,
            network.inputs_seq_len: inputs_seq_len,
            network.keep_prob_input: 1.0,
            network.keep_prob_hidden: 1.0
        }

        # Visualize
        labels_pred_st = session.run(decode_op, feed_dict=feed_dict)
        labels_true = sparsetensor2list(labels_true_st, batch_size=1)
        labels_pred = sparsetensor2list(labels_pred_st, batch_size=1)

        if label_type == 'character':
            print('----- wav: %s -----' % input_names[0])
            print('True: %s' % num2char(labels_true[0], map_file_path))
            print('Pred: %s' % num2char(labels_pred[0], map_file_path))

        else:
            print('----- wav: %s -----' % input_names[0])
            print('True: %s' % num2phone(labels_true[0], map_file_path))

            print('Pred: %s' % num2phone(labels_pred[0], map_file_path))
    def check_reading(self, num_gpu, is_sorted):
        print('----- num_gpu: ' + str(num_gpu) + ', is_sorted: ' +
              str(is_sorted) + ' -----')

        batch_size = 64
        dataset = DataSet(data_type='train',
                          label_type_second='phone61',
                          batch_size=batch_size,
                          num_stack=3,
                          num_skip=3,
                          is_sorted=is_sorted,
                          is_progressbar=True,
                          num_gpu=num_gpu)

        tf.reset_default_graph()
        with tf.Session().as_default() as sess:
            print('=> Reading mini-batch...')
            map_file_path_char = '../metric/mapping_files/ctc/char2num.txt'
            map_file_path_phone = '../metric/mapping_files/ctc/phone2num_61.txt'

            mini_batch = dataset.next_batch(session=sess)

            iter_per_epoch = int(dataset.data_num / (batch_size * num_gpu)) + 1
            for i in range(iter_per_epoch + 1):
                inputs, labels_char_st, labels_phone_st, inputs_seq_len, input_names = mini_batch.__next__(
                )

                if num_gpu > 1:
                    for inputs_gpu in inputs:
                        print(inputs_gpu.shape)
                    labels_char_st = labels_char_st[0]
                    labels_phone_st = labels_phone_st[0]

                labels_char = sparsetensor2list(labels_char_st,
                                                batch_size=len(inputs))
                labels_phone = sparsetensor2list(labels_phone_st,
                                                 batch_size=len(inputs))

                if num_gpu == 1:
                    for inputs_i, labels_i in zip(inputs, labels_char):
                        if len(inputs_i) < len(labels_i):
                            print(len(inputs_i))
                            print(len(labels_i))
                            raise ValueError
                    for inputs_i, labels_i in zip(inputs, labels_phone):
                        if len(inputs_i) < len(labels_i):
                            print(len(inputs_i))
                            print(len(labels_i))
                            raise ValueError

                str_true_char = num2char(labels_char[0], map_file_path_char)
                str_true_char = re.sub(r'_', ' ', str_true_char)
                str_true_phone = num2phone(labels_phone[0],
                                           map_file_path_phone)
                print(str_true_char)
                print(str_true_phone)
                print('-----')
예제 #4
0
    def test(self):
        dataset = DataSet(data_type='dev',
                          label_type='character',
                          num_stack=3,
                          num_skip=3,
                          is_sorted=True,
                          is_progressbar=True)

        print('=> Reading mini-batch...')
        map_file_path = '../evaluation/mapping_files/ctc/char2num.txt'
        for i in tqdm(range(20000)):
            inputs, labels, seq_len, input_names = dataset.next_batch(
                batch_size=64)
            indices, values, dense_shape = list2sparsetensor(labels)
            str_true = num2char(labels[0], map_file_path)
            str_true = re.sub(r'_', ' ', str_true)
            print(str_true)
예제 #5
0
def do_eval_cer(session,
                decode_op,
                network,
                dataset,
                label_type,
                is_test=None,
                eval_batch_size=None,
                rate=1.0,
                is_progressbar=False,
                is_multitask=False,
                is_main=False):
    """Evaluate trained model by Character Error Rate.
    Args:
        session: session of training model
        decode_op: operation for decoding
        network: network to evaluate
        dataset: Dataset class
        label_type: character or kanji
        is_test: set to True when evaluating by the test set
        eval_batch_size: batch size on evaluation
        rate: rate of evaluation data to use
        is_progressbar: if True, visualize progressbar
        is_multitask: if True, evaluate the multitask model
        is_main: if True, evaluate the main task
    Return:
        cer_mean: mean character error rate
    """
    batch_size = network.batch_size if eval_batch_size is None else eval_batch_size

    num_examples = dataset.data_num * rate
    iteration = int(num_examples / batch_size)
    if (num_examples / batch_size) != int(num_examples / batch_size):
        iteration += 1
    cer_sum = 0

    if label_type == 'character':
        map_file_path = '../evaluation/mapping_files/ctc/char2num.txt'
    elif label_type == 'kanji':
        map_file_path = '../evaluation/mapping_files/ctc/kanji2num.txt'
    iterator = tqdm(range(iteration)) if is_progressbar else range(iteration)
    for step in iterator:
        # Create feed dictionary for next mini batch
        if not is_multitask:
            inputs, labels_true, seq_len, _ = dataset.next_batch(
                batch_size=batch_size)
        else:
            if is_main:
                inputs, labels_true, _, seq_len, _ = dataset.next_batch(
                    batch_size=batch_size)
            else:
                inputs, _, labels_true, seq_len, _ = dataset.next_batch(
                    batch_size=batch_size)

        feed_dict = {
            network.inputs_pl: inputs,
            network.seq_len_pl: seq_len,
            network.keep_prob_input_pl: 1.0,
            network.keep_prob_hidden_pl: 1.0
        }

        batch_size_each = len(labels_true)
        labels_pred_st = session.run(decode_op, feed_dict=feed_dict)
        labels_pred = sparsetensor2list(labels_pred_st, batch_size_each)
        for i_batch in range(batch_size_each):

            # Convert from list to string
            str_pred = num2char(labels_pred[i_batch], map_file_path)
            str_pred = re.sub(r'_', '', str_pred)
            # TODO: change in case of character
            if label_type == 'kanji' and is_test:
                str_true = labels_true[i_batch]
            else:
                str_true = num2char(labels_true[i_batch], map_file_path)
            str_true = re.sub(r'_', '', str_true)

            # Compute edit distance
            cer_each = Levenshtein.distance(str_pred, str_true) / len(
                list(str_true))
            cer_sum += cer_each

    cer_mean = cer_sum / dataset.data_num
    print('  CER: %f %%' % (cer_mean * 100))

    return cer_mean
예제 #6
0
def decode_test(session,
                decode_op,
                network,
                dataset,
                label_type,
                is_test,
                eval_batch_size=None,
                rate=1.0):
    """Visualize label outputs.
    Args:
        session: session of training model
        decode_op: operation for decoding
        network: network to evaluate
        dataset: Dataset class
        label_type: phone or character or kanji
        is_test: set to True when evaluating by the test set
        eval_batch_size: batch size on evaluation
        rate: rate of evaluation data to use
    """
    batch_size = 1
    num_examples = dataset.data_num * rate
    iteration = int(num_examples / batch_size)
    if (num_examples / batch_size) != int(num_examples / batch_size):
        iteration += 1

    map_file_path_phone = '../evaluation/mapping_files/ctc/phone2num.txt'
    if label_type == 'character':
        map_file_path = '../evaluation/mapping_files/ctc/char2num.txt'
    elif label_type == 'kanji':
        map_file_path = '../evaluation/mapping_files/ctc/kanji2num.txt'
    for step in range(iteration):
        # Create feed dictionary for next mini batch
        inputs, labels_true, seq_len, input_names = dataset.next_batch(
            batch_size=batch_size)

        feed_dict = {
            network.inputs_pl: inputs,
            network.seq_len_pl: seq_len,
            network.keep_prob_input_pl: 1.0,
            network.keep_prob_hidden_pl: 1.0
        }

        # Visualize
        batch_size_each = len(labels_true)
        labels_pred_st = session.run(decode_op, feed_dict=feed_dict)
        labels_pred = sparsetensor2list(labels_pred_st, batch_size_each)
        for i_batch in range(batch_size_each):
            if label_type in ['character', 'kanji']:
                # Convert from list to string
                str_pred = num2char(labels_pred[i_batch], map_file_path)
                if label_type == 'kanji' and is_test:
                    str_true = labels_true[i_batch]
                else:
                    str_true = num2char(labels_true[i_batch], map_file_path)

                print('-----wav: %s-----' % input_names[i_batch])
                print('True: %s' % str_true)
                print('Pred: %s' % str_pred)

            elif label_type == 'phone':
                print('-----wav: %s-----' % input_names[i_batch])
                print('True: %s' %
                      num2phone(labels_true[i_batch], map_file_path_phone))
                print('Pred: %s' %
                      num2phone(labels_pred[i_batch], map_file_path_phone))
def do_eval_cer(session,
                decode_op,
                network,
                dataset,
                label_type,
                is_test=None,
                eval_batch_size=None,
                is_progressbar=False,
                is_multitask=False,
                is_main=False):
    """Evaluate trained model by Character Error Rate.
    Args:
        session: session of training model
        decode_op: operation for decoding
        network: network to evaluate
        dataset: An instance of `Dataset` class
        label_type: string, character or kanji
        is_test: set to True when evaluating by the test set
        eval_batch_size: int, the batch size when evaluating the model
        is_progressbar: if True, visualize progressbar
        is_multitask: if True, evaluate the multitask model
        is_main: if True, evaluate the main task
    Return:
        cer_mean: An average of CER
    """
    if eval_batch_size is None:
        batch_size = network.batch_size
    else:
        batch_size = eval_batch_size

    num_examples = dataset.data_num
    iteration = int(num_examples / batch_size)
    if (num_examples / batch_size) != int(num_examples / batch_size):
        iteration += 1
    cer_sum = 0

    # Make data generator
    mini_batch = dataset.next_batch(batch_size=batch_size)

    if label_type == 'character':
        map_file_path = '../metric/mapping_files/ctc/char2num.txt'
    elif label_type == 'kanji':
        map_file_path = '../metric/mapping_files/ctc/kanji2num.txt'
    for step in wrap_iterator(range(iteration), is_progressbar):
        # Create feed dictionary for next mini batch
        if not is_multitask:
            inputs, labels_true_st, inputs_seq_len, _ = mini_batch.__next__()
        else:
            if is_main:
                inputs, labels_true_st, _, inputs_seq_len, _ = mini_batch.__next__(
                )
            else:
                inputs, _, labels_true_st, inputs_seq_len, _ = mini_batch.__next__(
                )

        feed_dict = {
            network.inputs: inputs,
            network.inputs_seq_len: inputs_seq_len,
            network.keep_prob_input: 1.0,
            network.keep_prob_hidden: 1.0
        }

        batch_size_each = len(inputs_seq_len)

        labels_pred_st = session.run(decode_op, feed_dict=feed_dict)
        labels_true = sparsetensor2list(labels_true_st, batch_size_each)
        labels_pred = sparsetensor2list(labels_pred_st, batch_size_each)
        for i_batch in range(batch_size_each):
            # Convert from list to string
            str_pred = num2char(labels_pred[i_batch], map_file_path)
            # TODO: change in case of character
            if label_type == 'kanji' and is_test:
                str_true = ''.join(labels_true[i_batch])
                # NOTE* 漢字の場合はテストデータのラベルはそのまま保存してある
            else:
                str_true = num2char(labels_true[i_batch], map_file_path)

            # Remove silence(_) labels
            str_true = re.sub(r'[_]+', "", str_true)
            str_pred = re.sub(r'[_]+', "", str_pred)

            # Compute edit distance
            cer_each = Levenshtein.distance(str_pred, str_true) / len(
                list(str_true))

            cer_sum += cer_each

    cer_mean = cer_sum / dataset.data_num

    return cer_mean
def do_eval_cer(session,
                decode_op,
                network,
                dataset,
                eval_batch_size=None,
                is_progressbar=False,
                is_multitask=False):
    """Evaluate trained model by Character Error Rate.
    Args:
        session: session of training model
        decode_op: operation for decoding
        network: network to evaluate
        dataset: An instance of a `Dataset` class
        eval_batch_size: int, batch size when evaluating the model
        is_progressbar: if True, visualize the progressbar
        is_multitask: if True, evaluate the multitask model
    Return:
        cer_mean: An average of CER
    """
    if eval_batch_size is not None:
        batch_size = eval_batch_size
    else:
        batch_size = dataset.batch_size

    # Make data generator
    mini_batch = dataset.next_batch(batch_size=batch_size)

    num_examples = dataset.data_num
    iteration = int(num_examples / batch_size)
    if (num_examples / batch_size) != int(num_examples / batch_size):
        iteration += 1
    cer_sum = 0

    map_file_path = '../metric/mapping_files/attention/char2num.txt'
    for step in wrap_iterator(range(iteration), is_progressbar):
        # Create feed dictionary for next mini batch
        if not is_multitask:
            inputs, labels_true, inputs_seq_len, _, _ = mini_batch.__next__()
        else:
            inputs, labels_true, _, inputs_seq_len, _, _ = mini_batch.__next__(
            )

        feed_dict = {
            network.inputs: inputs,
            network.inputs_seq_len: inputs_seq_len,
            network.keep_prob_input: 1.0,
            network.keep_prob_hidden: 1.0
        }

        batch_size_each = len(inputs_seq_len)

        predicted_ids = session.run(decode_op, feed_dict=feed_dict)
        for i_batch in range(batch_size_each):

            # Convert from list to string
            str_true = num2char(labels_true[i_batch], map_file_path)
            str_pred = num2char(predicted_ids[i_batch], map_file_path)

            # Remove silence(_) labels
            str_true = re.sub(r'[_<>]+', "", str_true)
            str_pred = re.sub(r'[_]+', "", str_pred)
            print(str_true)
            print(str_pred)

            # Compute edit distance
            cer_each = Levenshtein.distance(str_pred, str_true) / len(
                list(str_true))
            cer_sum += cer_each

    cer_mean = cer_sum / dataset.data_num

    return cer_mean
예제 #9
0
def do_train(network, optimizer, learning_rate, batch_size, epoch_num,
             label_type, num_stack, num_skip, train_data_size):
    """Run training.
    Args:
        network: network to train
        optimizer: string, the name of optimizer. ex.) adam, rmsprop
        learning_rate: initial learning rate
        batch_size: size of mini batch
        epoch_num: epoch num to train
        label_type: phone or character or kanji
        num_stack: int, the number of frames to stack
        num_skip: int, the number of frames to skip
        train_data_size: default or large
    """
    # Load dataset
    train_data = DataSet(data_type='train',
                         label_type=label_type,
                         train_data_size=train_data_size,
                         num_stack=num_stack,
                         num_skip=num_skip,
                         is_sorted=True)
    dev_data = DataSet(data_type='dev',
                       label_type=label_type,
                       train_data_size=train_data_size,
                       num_stack=num_stack,
                       num_skip=num_skip,
                       is_sorted=False)
    eval1_data = DataSet(data_type='eval1',
                         label_type=label_type,
                         train_data_size=train_data_size,
                         num_stack=num_stack,
                         num_skip=num_skip,
                         is_sorted=False)
    eval2_data = DataSet(data_type='eval2',
                         label_type=label_type,
                         train_data_size=train_data_size,
                         num_stack=num_stack,
                         num_skip=num_skip,
                         is_sorted=False)
    eval3_data = DataSet(data_type='eval3',
                         label_type=label_type,
                         train_data_size=train_data_size,
                         num_stack=num_stack,
                         num_skip=num_skip,
                         is_sorted=False)

    # Tell TensorFlow that the model will be built into the default graph
    with tf.Graph().as_default():

        # Define model
        network.define()
        # NOTE: define model under tf.Graph()

        # Add to the graph each operation
        loss_op = network.loss()
        train_op = network.train(optimizer=optimizer,
                                 learning_rate_init=learning_rate,
                                 is_scheduled=False)
        decode_op = network.decoder(decode_type='beam_search', beam_width=20)
        per_op = network.ler(decode_op)

        # Build the summary tensor based on the TensorFlow collection of
        # summaries
        summary_train = tf.summary.merge(network.summaries_train)
        summary_dev = tf.summary.merge(network.summaries_dev)

        # Add the variable initializer operation
        init_op = tf.global_variables_initializer()

        # Create a saver for writing training checkpoints
        saver = tf.train.Saver(max_to_keep=None)

        # Count total parameters
        parameters_dict, total_parameters = count_total_parameters(
            tf.trainable_variables())
        for parameter_name in sorted(parameters_dict.keys()):
            print("%s %d" % (parameter_name, parameters_dict[parameter_name]))
        print("Total %d variables, %s M parameters" %
              (len(parameters_dict.keys()), "{:,}".format(
                  total_parameters / 1000000)))

        csv_steps = []
        csv_train_loss = []
        csv_dev_loss = []
        # Create a session for running operation on the graph
        with tf.Session() as sess:
            # Instantiate a SummaryWriter to output summaries and the graph
            summary_writer = tf.summary.FileWriter(network.model_dir,
                                                   sess.graph)

            # Initialize parameters
            sess.run(init_op)

            # Train model
            iter_per_epoch = int(train_data.data_num / batch_size)
            if (train_data.data_num / batch_size) != int(
                    train_data.data_num / batch_size):
                iter_per_epoch += 1
            max_steps = iter_per_epoch * epoch_num
            start_time_train = time.time()
            start_time_epoch = time.time()
            start_time_step = time.time()
            error_best = 1
            for step in range(max_steps):
                # Create feed dictionary for next mini batch (train)
                inputs, labels, seq_len, _ = train_data.next_batch(
                    batch_size=batch_size)
                indices, values, dense_shape = list2sparsetensor(labels)
                feed_dict_train = {
                    network.inputs_pl: inputs,
                    network.label_indices_pl: indices,
                    network.label_values_pl: values,
                    network.label_shape_pl: dense_shape,
                    network.seq_len_pl: seq_len,
                    network.keep_prob_input_pl: network.dropout_ratio_input,
                    network.keep_prob_hidden_pl: network.dropout_ratio_hidden,
                    network.lr_pl: learning_rate
                }

                # Create feed dictionary for next mini batch (dev)
                inputs, labels, seq_len, _ = dev_data.next_batch(
                    batch_size=batch_size)
                indices, values, dense_shape = list2sparsetensor(labels)
                feed_dict_dev = {
                    network.inputs_pl: inputs,
                    network.label_indices_pl: indices,
                    network.label_values_pl: values,
                    network.label_shape_pl: dense_shape,
                    network.seq_len_pl: seq_len,
                    network.keep_prob_input_pl: network.dropout_ratio_input,
                    network.keep_prob_hidden_pl: network.dropout_ratio_hidden
                }

                # Update parameters & compute loss
                _, loss_train = sess.run([train_op, loss_op],
                                         feed_dict=feed_dict_train)
                loss_dev = sess.run(loss_op, feed_dict=feed_dict_dev)
                csv_steps.append(step)
                csv_train_loss.append(loss_train)
                csv_dev_loss.append(loss_dev)

                if (step + 1) % 100 == 0:
                    # Change feed dict for evaluation
                    feed_dict_train[network.keep_prob_input_pl] = 1.0
                    feed_dict_train[network.keep_prob_hidden_pl] = 1.0
                    feed_dict_dev[network.keep_prob_input_pl] = 1.0
                    feed_dict_dev[network.keep_prob_hidden_pl] = 1.0

                    # Compute accuracy & \update event file
                    ler_train, summary_str_train = sess.run(
                        [per_op, summary_train], feed_dict=feed_dict_train)
                    ler_dev, summary_str_dev, labels_st = sess.run(
                        [per_op, summary_dev, decode_op],
                        feed_dict=feed_dict_dev)
                    summary_writer.add_summary(summary_str_train, step + 1)
                    summary_writer.add_summary(summary_str_dev, step + 1)
                    summary_writer.flush()

                    # Decode
                    try:
                        labels_pred = sparsetensor2list(labels_st, batch_size)
                    except:
                        labels_pred = [[0] * batch_size]

                    duration_step = time.time() - start_time_step
                    print(
                        'Step %d: loss = %.3f (%.3f) / ler = %.4f (%.4f) (%.3f min)'
                        % (step + 1, loss_train, loss_dev, ler_train, ler_dev,
                           duration_step / 60))
                    # print('Step %d: loss = %.3f / ler = %.4f (%.3f min)' %
                    #       (step + 1, loss_train, ler_train, duration_step / 60))

                    if label_type == 'kanji':
                        map_file_path = '../evaluation/mapping_files/ctc/kanji2num.txt'
                        print('True: %s' % num2char(labels[-1], map_file_path))
                        print('Pred: %s' %
                              num2char(labels_pred[-1], map_file_path))
                    elif label_type == 'character':
                        map_file_path = '../evaluation/mapping_files/ctc/char2num.txt'
                        print('True: %s' % num2char(labels[-1], map_file_path))
                        print('Pred: %s' %
                              num2char(labels_pred[-1], map_file_path))
                    elif label_type == 'phone':
                        map_file_path = '../evaluation/mapping_files/ctc/phone2num.txt'
                        print('True: %s' %
                              num2phone(labels[-1], map_file_path))
                        print('Pred: %s' %
                              num2phone(labels_pred[-1], map_file_path))

                    sys.stdout.flush()
                    start_time_step = time.time()

                # Save checkpoint and evaluate model per epoch
                if (step + 1) % iter_per_epoch == 0 or (step + 1) == max_steps:
                    duration_epoch = time.time() - start_time_epoch
                    epoch = (step + 1) // iter_per_epoch
                    print('-----EPOCH:%d (%.3f min)-----' %
                          (epoch, duration_epoch / 60))

                    # Save model (check point)
                    checkpoint_file = join(network.model_dir, 'model.ckpt')
                    save_path = saver.save(sess,
                                           checkpoint_file,
                                           global_step=epoch)
                    print("Model saved in file: %s" % save_path)

                    start_time_eval = time.time()
                    if label_type in ['character', 'kanji']:
                        print('■Dev Evaluation:■')
                        error_epoch = do_eval_cer(session=sess,
                                                  decode_op=decode_op,
                                                  network=network,
                                                  dataset=dev_data,
                                                  label_type=label_type,
                                                  eval_batch_size=batch_size)

                        if error_epoch < error_best:
                            error_best = error_epoch
                            print('■■■ ↑Best Score (CER)↑ ■■■')

                            print('■eval1 Evaluation:■')
                            cer_eval1 = do_eval_cer(session=sess,
                                                    decode_op=decode_op,
                                                    network=network,
                                                    dataset=eval1_data,
                                                    label_type=label_type,
                                                    is_test=True,
                                                    eval_batch_size=batch_size)
                            print('■eval2 Evaluation:■')
                            cer_eval2 = do_eval_cer(session=sess,
                                                    decode_op=decode_op,
                                                    network=network,
                                                    dataset=eval2_data,
                                                    label_type=label_type,
                                                    is_test=- True,
                                                    eval_batch_size=batch_size)
                            print('■eval3 Evaluation:■')
                            cer_eval3 = do_eval_cer(session=sess,
                                                    decode_op=decode_op,
                                                    network=network,
                                                    dataset=eval3_data,
                                                    label_type=label_type,
                                                    is_test=True,
                                                    eval_batch_size=batch_size)
                            cer_mean = (cer_eval1 + cer_eval2 + cer_eval3) / 3.
                            print('■Mean:■')
                            print('  CER: %f %%' % (cer_mean * 100))

                    else:
                        print('■Dev Evaluation:■')
                        error_epoch = do_eval_per(session=sess,
                                                  per_op=per_op,
                                                  network=network,
                                                  dataset=dev_data,
                                                  eval_batch_size=batch_size)

                        if error_epoch < error_best:
                            error_best = error_epoch
                            print('■■■ ↑Best Score (PER)↑ ■■■')

                            print('■eval1 Evaluation:■')
                            per_eval1 = do_eval_per(session=sess,
                                                    per_op=per_op,
                                                    network=network,
                                                    dataset=eval1_data,
                                                    eval_batch_size=batch_size)
                            print('■eval2 Evaluation:■')
                            per_eval2 = do_eval_per(session=sess,
                                                    per_op=per_op,
                                                    network=network,
                                                    dataset=eval2_data,
                                                    eval_batch_size=batch_size)
                            print('■eval3 Evaluation:■')
                            per_eval3 = do_eval_per(session=sess,
                                                    per_op=per_op,
                                                    network=network,
                                                    dataset=eval3_data,
                                                    eval_batch_size=batch_size)
                            per_mean = (per_eval1 + per_eval2 + per_eval3) / 3.
                            print('■Mean:■')
                            print('  PER: %f %%' % (per_mean * 100))

                    duration_eval = time.time() - start_time_eval
                    print('Evaluation time: %.3f min' % (duration_eval / 60))

                    start_time_epoch = time.time()
                    start_time_step = time.time()

            duration_train = time.time() - start_time_train
            print('Total time: %.3f hour' % (duration_train / 3600))

            # Save train & dev loss
            save_loss(csv_steps,
                      csv_train_loss,
                      csv_dev_loss,
                      save_path=network.model_dir)

            # Training was finished correctly
            with open(join(network.model_dir, 'complete.txt'), 'w') as f:
                f.write('')