format_results(train_error, pred, labels, multi_label, cfg) else: format_results(train_error, pred, cfg.train_sets.label_vec, multi_label, cfg) # validation valid_error, pred2, labels = validate_by_minibatch(valid_fn, cfg) n_data_valid = len(pred2) log("- Validation:\n") if multi_label: format_results(valid_error, pred2, labels, multi_label, cfg) else: format_results(valid_error, pred2, cfg.valid_sets.label_vec, multi_label, cfg) cfg.lrate.get_next_rate(current_error = 100 * numpy.mean(valid_error)) # output nnet parameters and lrate, for training resume if cfg.lrate.epoch % cfg.model_save_step == 0: _nnet2file(dnn.layers, filename=wdir + '/nnet.tmp') _lrate2file(cfg.lrate, wdir + '/training_state.tmp') # save the model and network configuration for i in range(len(cfg.hidden_layers_sizes)): if i==0: n_params = (cfg.n_ins + 1) * cfg.hidden_layers_sizes[i] else: n_params += (cfg.hidden_layers_sizes[i-1] + 1) * cfg.hidden_layers_sizes[i] n_params += cfg.n_outs * (cfg.hidden_layers_sizes[i-1] + 1) ratio = float(n_params) / float(n_data_train) log('-->> Ratio Parameters / Data : ' + str(ratio)) if cfg.param_output_file != '': _nnet2file(dnn.layers, filename=cfg.param_output_file, input_factor = cfg.input_dropout_factor, factor = cfg.dropout_factor) log('> ... the final PDNN model parameter is ' + cfg.param_output_file) if cfg.cfg_output_file != '': _cfg2file(dnn.cfg, filename=cfg.cfg_output_file)
# one epoch of sgd training train_acc, train_error = train_sgd(train_fn, cfg) log('> epoch %d, lrate %f, training accuracy %f' % (cfg.lrate.epoch, cfg.lrate.get_rate(), 100 * numpy.mean(train_acc)) + '(%)') # validation valid_acc, valid_error = validate_by_minibatch(valid_fn, cfg) log('> epoch %d, lrate %f, validate accuracy %f' % (cfg.lrate.epoch, cfg.lrate.get_rate(), 100 * numpy.mean(valid_acc)) + '(%)') cfg.lrate.get_next_rate(current_error=100 * numpy.mean(valid_error)) # output nnet parameters and lrate, for training resume if cfg.lrate.epoch % cfg.model_save_step == 0: _nnet2file(cnn, filename=wdir + '/nnet.tmp_CNN_LACEA') _lrate2file(cfg.lrate, wdir + '/training_state.tmp_CNN_LACEA') # save the model and network configuration if cfg.param_output_file != '': _nnet2file(cnn, filename=cfg.param_output_file, input_factor=cfg.input_dropout_factor, factor=cfg.dropout_factor) log('> ... the final PDNN model parameter is ' + cfg.param_output_file) if cfg.cfg_output_file != '': _cfg2file(cnn.cfg, filename=cfg.cfg_output_file) log('> ... the final PDNN model config is ' + cfg.cfg_output_file) # output the fully-connected part into Kaldi-compatible format if cfg.kaldi_output_file != '': log('> ... start to output the FC part')
(cfg.train_x, cfg.train_y), (cfg.valid_x, cfg.valid_y), batch_size=cfg.batch_size) log('> ... finetuning the model') while (cfg.lrate.get_rate() != 0): # one epoch of sgd training train_error = train_sgd(train_fn, cfg) log('> epoch %d, training error %f ' % (cfg.lrate.epoch, 100*numpy.mean(train_error)) + '(%)') # validation valid_error = validate_by_minibatch(valid_fn, cfg) log('> epoch %d, lrate %f, validation error %f ' % (cfg.lrate.epoch, cfg.lrate.get_rate(), 100*numpy.mean(valid_error)) + '(%)') cfg.lrate.get_next_rate(current_error = 100*numpy.mean(valid_error)) # output nnet parameters and lrate, for training resume if cfg.lrate.epoch % cfg.model_save_step == 0: _nnet2file(dnn.layers, filename=wdir + '/nnet.tmp') _lrate2file(cfg.lrate, wdir + '/training_state.tmp') # save the model and network configuration if cfg.param_output_file != '': _nnet2file(dnn.layers, filename=cfg.param_output_file, input_factor = cfg.input_dropout_factor, factor = cfg.dropout_factor) log('> ... the final PDNN model parameter is ' + cfg.param_output_file) if cfg.cfg_output_file != '': _cfg2file(dnn.cfg, filename=cfg.cfg_output_file) log('> ... the final PDNN model config is ' + cfg.cfg_output_file) # output the model into Kaldi-compatible format if cfg.kaldi_output_file != '': dnn.write_model_to_kaldi(cfg.kaldi_output_file) log('> ... the final Kaldi model is ' + cfg.kaldi_output_file) # remove the tmp files (which have been generated from resuming training)
log('> task %d, epoch %d, training error %f ' % (n, cfg.lrate.epoch, 100*numpy.mean(train_error_array[n])) + '(%)') train_error_array[n] = [] # perform validation, output valid error rate, and adjust learning rate based on the learning rate valid_error = validate_by_minibatch(valid_fn_array[n], cfg) log('> task %d, epoch %d, lrate %f, validation error %f ' % (n, cfg.lrate.epoch, cfg.lrate.get_rate(), 100*numpy.mean(valid_error)) + '(%)') cfg.lrate.get_next_rate(current_error = 100 * numpy.mean(valid_error)) else: log('> task %d, epoch %d, training error %f ' % (n, cfg.lrate.epoch, numpy.mean(train_error_array[n])) + '(%)') train_error_array[n] = [] # perform validation, output valid error rate, and adjust learning rate based on the learning rate valid_error = validate_by_minibatch(valid_fn_array[n], cfg) log('> task %d, epoch %d, lrate %f, validation error %f ' % (n, cfg.lrate.epoch, cfg.lrate.get_rate(), numpy.mean(valid_error)) + '(%)') cfg.lrate.get_next_rate(current_error = numpy.mean(valid_error)) # output nnet parameters and lrate, for training resume _nnet2file(dnn_array[n].layers, filename=wdir + '/nnet.tmp.task' + str(n)) _lrate2file(cfg.lrate, wdir + '/training_state.tmp.task' + str(n)) # if the lrate of a task decays to 0, training on this task terminates; it will be excluded from future training if cfg.lrate.get_rate() == 0: active_tasks_new.remove(n) # save the model and network configuration if cfg.param_output_file != '': _nnet2file(dnn_array[n].layers, filename=cfg.param_output_file + '.task' + str(n), input_factor = cfg.input_dropout_factor, factor = cfg.dropout_factor) log('> ... the final PDNN model parameter is ' + cfg.param_output_file + '.task' + str(n)) if cfg.cfg_output_file != '': _cfg2file(dnn_array[n].cfg, filename=cfg.cfg_output_file + '.task' + str(n)) log('> ... the final PDNN model config is ' + cfg.cfg_output_file + '.task' + str(n)) # output the model into Kaldi-compatible format if cfg.kaldi_output_file != '': dnn_array[n].write_model_to_kaldi(cfg.kaldi_output_file + '.task' + str(n)) log('> ... the final Kaldi model is ' + cfg.kaldi_output_file + '.task' + str(n))
# one epoch of sgd training train_error = train_sgd(train_fn, cfg) log("> epoch %d, training error %f " % (cfg.lrate.epoch, 100 * numpy.mean(train_error)) + "(%)") # validation valid_error = validate_by_minibatch(valid_fn, cfg) log( "> epoch %d, lrate %f, validation error %f " % (cfg.lrate.epoch, cfg.lrate.get_rate(), 100 * numpy.mean(valid_error)) + "(%)" ) cfg.lrate.get_next_rate(current_error=100 * numpy.mean(valid_error)) # output nnet parameters and lrate, for training resume if cfg.lrate.epoch % cfg.model_save_step == 0: _nnet2file(cnn.layers, filename=wdir + "/nnet.tmp") _lrate2file(cfg.lrate, wdir + "/training_state.tmp") # save the model and network configuration if cfg.param_output_file != "": _nnet2file( cnn.layers, filename=cfg.param_output_file, input_factor=cfg.input_dropout_factor, factor=cfg.dropout_factor ) log("> ... the final PDNN model parameter is " + cfg.param_output_file) if cfg.cfg_output_file != "": _cfg2file(cnn.cfg, filename=cfg.cfg_output_file) log("> ... the final PDNN model config is " + cfg.cfg_output_file) # output the fully-connected part into Kaldi-compatible format if cfg.kaldi_output_file != "": cnn.fc_dnn.write_model_to_kaldi(cfg.kaldi_output_file) log("> ... the final Kaldi model (only FC layers) is " + cfg.kaldi_output_file)
# one epoch of sgd training train_acc, train_error = train_sgd(train_fn, cfg) log('> epoch %d, lrate %f, training accuracy %f' % (cfg.lrate.epoch, cfg.lrate.get_rate(), 100 * numpy.mean(train_acc)) + '(%)') # validation valid_acc, valid_error = validate_by_minibatch(valid_fn, cfg) log('> epoch %d, lrate %f, validate accuracy %f' % (cfg.lrate.epoch, cfg.lrate.get_rate(), 100 * numpy.mean(valid_acc)) + '(%)') cfg.lrate.get_next_rate(current_error=100 * numpy.mean(valid_error)) # output nnet parameters and lrate, for training resume if cfg.lrate.epoch % cfg.model_save_step == 0: _nnet2file(densenet, filename=wdir + '/nnet.tmp_DENSENET') _lrate2file(cfg.lrate, wdir + '/training_state.tmp_DENSENET') # save the model and network configuration if cfg.param_output_file != '': _nnet2file(densenet, filename=cfg.param_output_file, input_factor=cfg.input_dropout_factor, factor=cfg.dropout_factor) log('> ... the final PDNN model parameter is ' + cfg.param_output_file) if cfg.cfg_output_file != '': _cfg2file(densenet.cfg, filename=cfg.cfg_output_file) log('> ... the final PDNN model config is ' + cfg.cfg_output_file) # output the fully-connected part into Kaldi-compatible format if cfg.kaldi_output_file != '': densenet.write_model_to_kaldi(cfg.kaldi_output_file)
def dnn_run(arguments): required_arguments = ['train_data', 'valid_data', 'nnet_spec', 'wdir'] for arg in required_arguments: if arguments.has_key(arg) == False: print "Error: the argument %s has to be specified" % (arg); exit(1) train_data_spec = arguments['train_data'] valid_data_spec = arguments['valid_data'] nnet_spec = arguments['nnet_spec'] wdir = arguments['wdir'] cfg = NetworkConfig() cfg.parse_config_dnn(arguments, nnet_spec) cfg.init_data_reading(train_data_spec, valid_data_spec) # parse pre-training options # pre-training files and layer number (how many layers are set to the pre-training parameters) ptr_layer_number = 0; ptr_file = '' if arguments.has_key('ptr_file') and arguments.has_key('ptr_layer_number'): ptr_file = arguments['ptr_file'] ptr_layer_number = int(arguments['ptr_layer_number']) # check working dir to see whether it's resuming training resume_training = False if os.path.exists(wdir + '/nnet.tmp') and os.path.exists(wdir + '/training_state.tmp'): resume_training = True cfg.lrate = _file2lrate(wdir + '/training_state.tmp') log('> ... found nnet.tmp and training_state.tmp, now resume training from epoch ' + str(cfg.lrate.epoch)) numpy_rng = numpy.random.RandomState(89677) theano_rng = RandomStreams(numpy_rng.randint(2 ** 30)) log('> ... building the model') # setup model if cfg.do_dropout: dnn = DNN_Dropout(numpy_rng=numpy_rng, theano_rng = theano_rng, cfg = cfg) else: dnn = DNN(numpy_rng=numpy_rng, theano_rng = theano_rng, cfg = cfg) # initialize model parameters # if not resuming training, initialized from the specified pre-training file # if resuming training, initialized from the tmp model file if (ptr_layer_number > 0) and (resume_training is False): _file2nnet(dnn.layers, set_layer_num = ptr_layer_number, filename = ptr_file) if resume_training: _file2nnet(dnn.layers, filename = wdir + '/nnet.tmp') # get the training, validation and testing function for the model log('> ... getting the finetuning functions') train_fn, valid_fn = dnn.build_finetune_functions((cfg.train_x, cfg.train_y), (cfg.valid_x, cfg.valid_y), batch_size=cfg.batch_size) log('> ... finetuning the model') while (cfg.lrate.get_rate() != 0): # one epoch of sgd training train_error = train_sgd(train_fn, cfg) log('> epoch %d, training error %f ' % (cfg.lrate.epoch, 100*numpy.mean(train_error)) + '(%)') # validation valid_error = validate_by_minibatch(valid_fn, cfg) log('> epoch %d, lrate %f, validation error %f ' % (cfg.lrate.epoch, cfg.lrate.get_rate(), 100*numpy.mean(valid_error)) + '(%)') cfg.lrate.get_next_rate(current_error = 100*numpy.mean(valid_error)) # output nnet parameters and lrate, for training resume if cfg.lrate.epoch % cfg.model_save_step == 0: _nnet2file(dnn.layers, filename=wdir + '/nnet.tmp') _lrate2file(cfg.lrate, wdir + '/training_state.tmp') # save the model and network configuration if cfg.param_output_file != '': _nnet2file(dnn.layers, filename=cfg.param_output_file, input_factor = cfg.input_dropout_factor, factor = cfg.dropout_factor) log('> ... the final PDNN model parameter is ' + cfg.param_output_file) if cfg.cfg_output_file != '': _cfg2file(dnn.cfg, filename=cfg.cfg_output_file) log('> ... the final PDNN model config is ' + cfg.cfg_output_file)
def dnn_run(arguments): required_arguments = ['train_data', 'valid_data', 'nnet_spec', 'wdir'] for arg in required_arguments: if arguments.has_key(arg) == False: print "Error: the argument %s has to be specified" % (arg) exit(1) train_data_spec = arguments['train_data'] valid_data_spec = arguments['valid_data'] nnet_spec = arguments['nnet_spec'] wdir = arguments['wdir'] cfg = NetworkConfig() cfg.parse_config_dnn(arguments, nnet_spec) cfg.init_data_reading(train_data_spec, valid_data_spec) # parse pre-training options # pre-training files and layer number (how many layers are set to the pre-training parameters) ptr_layer_number = 0 ptr_file = '' if arguments.has_key('ptr_file') and arguments.has_key('ptr_layer_number'): ptr_file = arguments['ptr_file'] ptr_layer_number = int(arguments['ptr_layer_number']) # check working dir to see whether it's resuming training resume_training = False if os.path.exists(wdir + '/nnet.tmp') and os.path.exists(wdir + '/training_state.tmp'): resume_training = True cfg.lrate = _file2lrate(wdir + '/training_state.tmp') log('> ... found nnet.tmp and training_state.tmp, now resume training from epoch ' + str(cfg.lrate.epoch)) numpy_rng = numpy.random.RandomState(89677) theano_rng = RandomStreams(numpy_rng.randint(2**30)) log('> ... building the model') # setup model if cfg.do_dropout: dnn = DNN_Dropout(numpy_rng=numpy_rng, theano_rng=theano_rng, cfg=cfg) else: dnn = DNN(numpy_rng=numpy_rng, theano_rng=theano_rng, cfg=cfg) # initialize model parameters # if not resuming training, initialized from the specified pre-training file # if resuming training, initialized from the tmp model file if (ptr_layer_number > 0) and (resume_training is False): _file2nnet(dnn.layers, set_layer_num=ptr_layer_number, filename=ptr_file) if resume_training: _file2nnet(dnn.layers, filename=wdir + '/nnet.tmp') # get the training, validation and testing function for the model log('> ... getting the finetuning functions') train_fn, valid_fn = dnn.build_finetune_functions( (cfg.train_x, cfg.train_y), (cfg.valid_x, cfg.valid_y), batch_size=cfg.batch_size) log('> ... finetuning the model') while (cfg.lrate.get_rate() != 0): # one epoch of sgd training train_error = train_sgd(train_fn, cfg) log('> epoch %d, training error %f ' % (cfg.lrate.epoch, 100 * numpy.mean(train_error)) + '(%)') # validation valid_error = validate_by_minibatch(valid_fn, cfg) log('> epoch %d, lrate %f, validation error %f ' % (cfg.lrate.epoch, cfg.lrate.get_rate(), 100 * numpy.mean(valid_error)) + '(%)') cfg.lrate.get_next_rate(current_error=100 * numpy.mean(valid_error)) # output nnet parameters and lrate, for training resume if cfg.lrate.epoch % cfg.model_save_step == 0: _nnet2file(dnn.layers, filename=wdir + '/nnet.tmp') _lrate2file(cfg.lrate, wdir + '/training_state.tmp') # save the model and network configuration if cfg.param_output_file != '': _nnet2file(dnn.layers, filename=cfg.param_output_file, input_factor=cfg.input_dropout_factor, factor=cfg.dropout_factor) log('> ... the final PDNN model parameter is ' + cfg.param_output_file) if cfg.cfg_output_file != '': _cfg2file(dnn.cfg, filename=cfg.cfg_output_file) log('> ... the final PDNN model config is ' + cfg.cfg_output_file)