def main(): log.set_logger(logger) logger.debug("Starting mongo sender") prometheus_instrumentation.start_http_server(9902) mongo_piper = MongoPiper(MONGO_GROUP_ID) mongo_piper.consume_pipe()
def main(): # BASIC SETUP logger = set_logger() args = NET_parse_args( main_description= "Training launcher for Neural net classifier on HIGGS benchmark") logger.info(args) flush(logger) # INFO model = build_model(args, -1) os.makedirs(model.results_directory, exist_ok=True) config = Config() config_table = evaluate_config(config) config_table.to_csv( os.path.join(model.results_directory, 'config_table.csv')) # RUN if not args.conditional_only: eval_table = get_eval_table(args, model.results_directory) if not args.estimate_only: eval_conditional = get_eval_conditional(args, model.results_directory) if not args.estimate_only and not args.conditional_only: eval_table = pd.concat([eval_table, eval_conditional], axis=1) # EVALUATION print_line() print_line() print(eval_table) print_line() print_line() eval_table.to_csv( os.path.join(model.results_directory, 'evaluation.csv')) gather_images(model.results_directory)
def main(): # BASIC SETUP logger = set_logger() args = REG_parse_args( main_description="Training launcher for Regressor on S3D2 benchmark") logger.info(args) flush(logger) # INFO args.net = AR5R5E(n_in=3, n_out=2, n_extra=2) args.optimizer = get_optimizer(args) model = get_model(args, Regressor) model.set_info(DATA_NAME, BENCHMARK_NAME, -1) pb_config = S3D2Config() # RUN results = [run(args, i_cv) for i_cv in range(N_ITER)] results = pd.concat(results, ignore_index=True) results.to_csv(os.path.join(model.results_directory, 'results.csv')) # EVALUATION eval_table = evaluate_estimator(pb_config.INTEREST_PARAM_NAME, results) print_line() print_line() print(eval_table) print_line() print_line() eval_table.to_csv(os.path.join(model.results_directory, 'evaluation.csv')) gather_images(model.results_directory)
def main(): # BASIC SETUP logger = set_logger() args = NET_parse_args( main_description= "Training launcher for Gradient boosting on S3D2 benchmark") logger.info(args) flush(logger) # INFO model = build_model(args, -1) os.makedirs(model.results_directory, exist_ok=True) # config = Config() # config_table = evaluate_config(config) # config_table.to_csv(os.path.join(model.results_directory, 'config_table.csv')) # RUN evaluation = [run(args, i_cv) for i_cv in range(N_ITER)] # EVALUATION evaluation = pd.concat(evaluation) evaluation.to_csv(os.path.join(model.results_directory, "evaluation.csv")) plot_auc(evaluation, model_name=model.base_name, directory=model.results_directory) plot_accuracy(evaluation, model_name=model.base_name, directory=model.results_directory) if False: # Temporary removed gather_images(model.results_directory)
def main(): # BASIC SETUP logger = set_logger() args = REG_parse_args( main_description= "Training launcher for Marginal Regressor on HIGGS benchmark") logger.info(args) flush(logger) # INFO model = build_model(args, -1) os.makedirs(model.results_directory, exist_ok=True) config = Config() config_table = evaluate_config(config) config_table.to_csv( os.path.join(model.results_directory, 'config_table.csv')) # RUN eval_table = get_eval_table(args, model.results_directory) # EVALUATION print_line() print_line() print(eval_table) print_line() print_line() eval_table.to_csv(os.path.join(model.results_directory, 'evaluation.csv')) gather_images(model.results_directory)
def main(): # BASIC SETUP logger = set_logger() args = REG_parse_args( main_description= "Training launcher for Gradient boosting on S3D2 benchmark") logger.info(args) flush(logger) # INFO model = build_model(args, -1) os.makedirs(model.results_directory, exist_ok=True) config = Config() config_table = evaluate_config(config) config_table.to_csv( os.path.join(model.results_directory, 'config_table.csv')) # RUN results = [run(args, i_cv) for i_cv in range(N_ITER)] results = pd.concat(results, ignore_index=True) results.to_csv(os.path.join(model.results_directory, 'estimations.csv')) # EVALUATION eval_table = evaluate_estimator(config.INTEREST_PARAM_NAME, results) print_line() print_line() print(eval_table) print_line() print_line() eval_table.to_csv(os.path.join(model.results_directory, 'evaluation.csv')) gather_images(model.results_directory)
def main(): logger = set_logger() directory = os.path.join(DIRECTORY, "nll_contour") os.makedirs(directory, exist_ok=True) args = parse_args() train_generator, valid_generator, test_generator = get_generators() config = Config() model = load_some_NN(cuda=args.cuda) compute_nll = get_nll_computer(model, config, valid_generator, test_generator) nll = compute_nll(*config.CALIBRATED) logger.info(f"calib nll = {nll}") nll = compute_nll(*config.TRUE) logger.info(f"calib nll = {nll}") f = lambda xk: compute_nll(*xk) xk = np.array(list(config.TRUE)) print(xk) EPSILON = 1e-8 epsilon = np.array([EPSILON] * 2) grad = approx_fprime(xk, f, epsilon) print(grad, grad.dot(grad.T)) logger.info(f"Running BFGS on the NLL") x_0 = np.array(list(config.CALIBRATED)) print(fmin_bfgs(f, x_0))
def main(): logger = set_logger() root_directory = os.path.join(DIRECTORY, "nll_contour") os.makedirs(root_directory, exist_ok=True) args = parse_args() N_CV = 3 # FIXME : remove lili and STEP to use all iteration ! STEP = 1 lili = list(Config().iter_test_config())[::STEP] N_ITER = len(lili) logger.info(f"{N_CV} cv and {N_ITER} iteractions ({N_ITER*N_CV} loops)") data = [] for i_cv in range(N_CV): model = load_some_NN(i_cv=i_cv, cuda=args.cuda) model.to_double() # model = load_some_GB(i_cv=i_cv) for i_iter, config in enumerate(lili): i_iter = i_iter * STEP values = run_cv_iter(args, i_cv, i_iter, config, model, root_directory) data.append(values) data = pd.DataFrame(data) fname = os.path.join(root_directory, "data.csv") data.to_csv(fname)
def supply_mayang_yunying(date): mysql_table = 'crm_supply_mayang_yunying_month' logger = log.set_logger('mayang_yunying.txt') # hive_sql = _sql.get_crm_mayang_yunying_sql(date) with open('./loadfile/mayang_yunying_month.txt', 'r', encoding='UTF-8') as hive_sql: hive_mysql_diff(logger, hive_sql, mysql_table, mayang_yunying_dict.keys(), date, True) pass
def main(): # BASIC SETUP logger = set_logger() args = REG_parse_args( main_description="Training launcher for Regressor on S3D2 benchmark") logger.info(args) flush(logger) # Setup model logger.info("Setup model") model = build_model(args, 0) os.makedirs(model.results_directory, exist_ok=True) # Setup data logger.info("Setup data") config = Config() config_table = evaluate_config(config) config_table.to_csv( os.path.join(model.results_directory, 'config_table.csv')) seed = SEED + 99999 train_generator, valid_generator, test_generator = get_generators_torch( seed, cuda=args.cuda, GeneratorClass=GeneratorClass) train_generator = GeneratorCPU(train_generator) train_generator = TrainGenerator(param_generator, train_generator) valid_generator = GeneratorCPU(valid_generator) test_generator = GeneratorCPU(test_generator) i_cv = 0 result_row = {'i_cv': i_cv} # TRAINING / LOADING train_or_load_neural_net(model, train_generator, retrain=args.retrain) # CHECK TRAINING result_row.update(evaluate_neural_net(model, prefix='valid')) evaluate_regressor(model, prefix='valid') print_line() result_table = [ run_iter(model, result_row, i, test_config, valid_generator, test_generator) for i, test_config in enumerate(config.iter_test_config()) ] result_table = pd.DataFrame(result_table) result_table.to_csv(os.path.join(model.results_directory, 'results.csv')) logger.info('Plot params') param_names = [CALIB_PARAM_NAME] for name in param_names: plot_params(name, result_table, title=model.full_name, directory=model.results_directory) logger.info('DONE')
def supply_warehose_rank(date): '''断货''' mysql_table = 'crm_supply_warehouse_month_top' logger = log.set_logger('warehouse_month_top.txt') # hive_sql=_sql.get_crm_warehouse_month_top_sql(date) with open('./loadfile/warehouse_month.txt', 'r', encoding='UTF-8') as hive_sql: hive_mysql_diff(logger, hive_sql, mysql_table, warehouse_dict.keys(), date, True) pass
def main(): # BASIC SETUP logger = set_logger() args = GB_parse_args(main_description="Training launcher for Gradient boosting on S3D2 benchmark") logger.info(args) flush(logger) # Config config = Config() config.TRUE = Parameter(r=0.1, lam=2.7, mu=0.1) train_generator = Generator(SEED) valid_generator = Generator(SEED+1) test_generator = Generator(SEED+2) X_test, y_test, w_test = test_generator.generate(*config.TRUE, n_samples=config.N_TESTING_SAMPLES) # for nuisance in p(nuisance | data) nuisance_param_sample = [param_generator().nuisance_parameters for _ in range(25)] average_list = [] variance_list = [] all_results = [] for nuisance_params in nuisance_param_sample: logger.info(f"nuisance_params = {nuisance_params}") estimator_values = [] results = {name : value for name, value in zip(config.TRUE.nuisance_parameters_names, nuisance_params)} for i_cv in range(N_ITER): clf = build_model(args, i_cv) parameters = Parameter(*nuisance_params, config.CALIBRATED.interest_parameters) print(parameters) n_samples = config.N_TRAINING_SAMPLES X_train, y_train, w_train = train_generator.generate(*parameters, n_samples=n_samples) logger.info(f"Training {clf.full_name}") # TODO : is it OK to provide w_train to the classifier or useless ? clf.fit(X_train, y_train, w_train) compute_summaries = ClassifierSummaryComputer(clf, n_bins=10) nll_computer = NLLComputer(compute_summaries, valid_generator, X_test, w_test, config=config) compute_nll = lambda mu : nll_computer(*nuisance_params, mu) minimizer = get_minimizer(compute_nll) results.update(evaluate_minuit(minimizer, [config.TRUE.interest_parameters])) all_results.append(results.copy()) # TODO : Add results to some csv estimator_values.append(results['mu']) average_list.append(np.mean(estimator_values)) variance_list.append(np.var(estimator_values)) logger.info(f"average_list {average_list}") logger.info(f"variance_list {variance_list}") v_stat = np.mean(variance_list) v_syst = np.var(average_list) v_total = v_stat + v_syst logger.info(f"V_stat = {v_stat}") logger.info(f"V_syst = {v_syst}") logger.info(f"V_total = {v_total}")
def product_rank_month_year(date, month=True): '''top品''' if month: logger = log.set_logger('product_rank_month.txt') mysql_table = "crm_supply_product_month_top" else: logger = log.set_logger('product_rank_year.txt') mysql_table = "crm_supply_product_year_top" hive_sql = get_crm_product_month_year_top_sql(date, month) #每个分组取top N # N=3 # hive_sql="select * from ("+hive_sql+") t where rank<="+str(N) #hive_file ,通过文件 if month: file = 'product_month.txt' else: file = 'product_rank_year.txt' with open('./loadfile/' + file, 'r', encoding='UTF-8') as hive_sql: hive_mysql_diff(logger, hive_sql, mysql_table, product_dict.keys(), date, month)
def main(): # BASIC SETUP logger = set_logger() args = INFERNO_parse_args( main_description= "Training launcher for Gradient boosting on S3D2 benchmark") logger.info(args) flush(logger) # INFO model = build_model(args, -1) os.makedirs(model.results_directory, exist_ok=True) config = Config() config_table = evaluate_config(config) config_table.to_csv( os.path.join(model.results_directory, 'config_table.csv')) # RUN if args.load_run: logger.info(f'Loading previous runs [{args.start_cv},{args.end_cv}[') directory = model.results_directory estimations = load_estimations(directory, start_cv=args.start_cv, end_cv=args.end_cv) conditional_estimations = load_conditional_estimations( directory, start_cv=args.start_cv, end_cv=args.end_cv) else: logger.info(f'Running runs [{args.start_cv},{args.end_cv}[') results = [ run(args, i_cv) for i_cv in range(args.start_cv, args.end_cv) ] estimations = [e0 for e0, e1 in results] estimations = pd.concat(estimations, ignore_index=True) conditional_estimations = [e1 for e0, e1 in results] conditional_estimations = pd.concat(conditional_estimations) estimations.to_csv(os.path.join(model.results_directory, 'estimations.csv')) conditional_estimations.to_csv( os.path.join(model.results_directory, 'conditional_estimations.csv')) # EVALUATION eval_table = evaluate_estimator(config.INTEREST_PARAM_NAME, estimations) eval_conditional = evaluate_conditional_estimation( conditional_estimations, interest_param_name=config.INTEREST_PARAM_NAME) eval_table = pd.concat([eval_table, eval_conditional], axis=1) print_line() print_line() print(eval_table) print_line() print_line() eval_table.to_csv(os.path.join(model.results_directory, 'evaluation.csv')) gather_images(model.results_directory)
def __init__( self, model, optimizer=None, scheduler=None, save_dir="", save_to_disk=None, logger=None, ): self.model = model self.optimizer = optimizer self.scheduler = scheduler self.save_dir = save_dir self.save_to_disk = save_to_disk if logger is None: logger = set_logger(__name__) self.logger = logger
def main(): # BASIC SETUP logger = set_logger() args = TP_parse_args(main_description="Training launcher for INFERNO on GG benchmark") logger.info(args) flush(logger) # INFO model = build_model(args, -1) os.makedirs(model.results_directory, exist_ok=True) # RUN logger.info(f'Running runs [{args.start_cv},{args.end_cv}[') results = [run(args, i_cv) for i_cv in range(args.start_cv, args.end_cv)] results = pd.concat(results, ignore_index=True) # EVALUATION results.to_csv(os.path.join(model.results_directory, 'fisher.csv')) print(results) print("DONE !")
def main(): logger = set_logger() directory = os.path.join(DIRECTORY, "nll_contour") os.makedirs(directory, exist_ok=True) args = parse_args() i_cv = 0 seed = SEED + i_cv * 5 train_generator, valid_generator, test_generator = get_generators_torch(seed, cuda=args.cuda) train_generator = GeneratorCPU(train_generator) valid_generator = GeneratorCPU(valid_generator) test_generator = GeneratorCPU(test_generator) model = load_some_NN() config = Config() config_table = evaluate_config(config) os.makedirs(os.path.join(directory, model.name), exist_ok=True) config_table.to_csv(os.path.join(directory, model.name, 'config_table.csv')) for i_iter, test_config in enumerate(config.iter_test_config()): do_iter(test_config, model, i_iter, valid_generator, test_generator, directory)
def main(): logger = set_logger() logger.info("Hello world !") os.makedirs(DIRECTORY, exist_ok=True) set_plot_config() args = None config = Config() results = [run(args, i_cv) for i_cv in range(N_ITER)] results = pd.concat(results, ignore_index=True) results.to_csv(os.path.join(DIRECTORY, 'results.csv')) # EVALUATION eval_table = evaluate_estimator(config.TRUE.interest_parameters_names, results) print_line() print_line() print(eval_table) print_line() print_line() eval_table.to_csv(os.path.join(DIRECTORY, 'evaluation.csv')) gather_images(DIRECTORY)
def main(): # BASIC SETUP logger = set_logger() args = GB_parse_args(main_description="Training launcher for Gradient boosting on AP1 benchmark") logger.info(args) flush(logger) # INFO model = get_model(args, GradientBoostingModel) model.set_info(BENCHMARK_NAME, -1) pb_config = AP1Config() # RUN results = [run(args, i_cv) for i_cv in range(N_ITER)] results = pd.concat(results, ignore_index=True) results.to_csv(os.path.join(model.directory, 'results.csv')) # EVALUATION eval_table = evaluate_estimator(pb_config.INTEREST_PARAM_NAME, results) print_line() print_line() print(eval_table) print_line() print_line() eval_table.to_csv(os.path.join(model.directory, 'evaluation.csv')) gather_images(model.directory)
def main(): # BASIC SETUP logger = set_logger() args = INFERNO_parse_args( main_description="Training launcher for Regressor on S3D2 benchmark") logger.info(args) flush(logger) # INFO model = build_model(args, -1) pb_config = Config() # RUN results = [run(args, i_cv) for i_cv in range(N_ITER)] results = pd.concat(results, ignore_index=True) results.to_csv(os.path.join(model.directory, 'results.csv')) # EVALUATION eval_table = evaluate_estimator(pb_config.INTEREST_PARAM_NAME, results) print_line() print_line() print(eval_table) print_line() print_line() eval_table.to_csv(os.path.join(model.directory, 'evaluation.csv')) gather_images(model.directory)
import datetime import argparse import numpy as np from utils.log import set_logger from utils.metric_logger import MetricLogger from utils.checkpoint import Checkpointer from solver import make_optimizer from solver import make_scheduler import net.network as ntk from net import pool_aggregator as pa from data.fashion import FashionDataset from torch.utils.data import DataLoader from data.dataloader import get_loader logger = set_logger("trainer") nets = { "alexnet": ntk.AlexNet, "vggnet": ntk.VGGNet, "resnet": ntk.ResNet, } def train(args): try: model = nets[args.net](args.margin, args.omega, args.use_hardtriplet) model.to(args.device) except Exception as e: logger.error("Initialize {} error: {}".format(args.net, e)) return logger.info("Training {}.".format(args.net))
def main(): # BASIC SETUP logger = set_logger() args = parse_args() logger.info(args) flush(logger) # SET MODEL model = get_model(args) # LOAD/GENERATE DATA logger.info('Generating data ...') pb_config = Config() generator = Synthetic3D(seed=config.SEED, n_expected_events=1050) generator.N_SIG = pb_config.N_SIG generator.N_BKG = pb_config.N_BKG D_train = generator.train_sample(pb_config.CALIBRATED_R, pb_config.CALIBRATED_LAMBDA, pb_config.CALIBRATED_MU, n_samples=pb_config.N_TRAINING_SAMPLES) D_test = generator.test_sample(pb_config.CALIBRATED_R, pb_config.CALIBRATED_LAMBDA, pb_config.CALIBRATED_MU) X_train, y_train, w_train = split_data_label_weights(D_train) X_test, y_test, w_test = split_data_label_weights(D_test) # TRAINING model.fit(X_train, y_train, w_train) # SAVE MODEL i = 99 model_name = '{}-{}'.format(model.get_name(), i) model_path = os.path.join(config.SAVING_DIR, model_name) logger.info("Saving in {}".format(model_path)) os.makedirs(model_path, exist_ok=True) model.save(model_path) # CHECK TRAINING plot_test_distrib(model, model_name, model_path, X_test, y_test) plot_summaries(model, model_name, model_path, X_test, y_test, w_test) # NLL summary_computer = lambda X, w: compute_summaries(model, X, w, n_bins=10) D_final = generator.final_sample(pb_config.TRUE_R, pb_config.TRUE_LAMBDA, pb_config.TRUE_MU) X_final, y_final, w_final = split_data_label_weights(D_final) compute_nll = Synthetic3DNLL(summary_computer, generator, X_final, w_final) # NLL PLOTS plot_R_around_min(compute_nll, model_path) plot_LAMBDA_around_min(compute_nll, model_path) plot_MU_around_min(compute_nll, model_path) # MINIMIZE NLL minimizer = iminuit.Minuit( compute_nll, errordef=ERRORDEF_NLL, r=pb_config.CALIBRATED_R, error_r=pb_config.CALIBRATED_R_ERROR, #limit_r=(0, None), lam=pb_config.CALIBRATED_LAMBDA, error_lam=pb_config.CALIBRATED_LAMBDA_ERROR, limit_lam=(0, None), mu=pb_config.CALIBRATED_MU, error_mu=pb_config.CALIBRATED_MU_ERROR, limit_mu=(0, 1), ) minimizer.print_param() fmin, param = minimizer.migrad() param = minimizer.hesse() for name, (value, err) in {p['name']: (p['value'], p['error']) for p in param}.items(): print('{name:3} = {value} ({err})'.format(**locals())) print('true_r', pb_config.TRUE_R) print('true_lam', pb_config.TRUE_LAMBDA) print('true_mu', pb_config.TRUE_MU) print(param[2]['value'] * 1050, 'signal events estimated') print(param[2]['error'] * 1050, 'error on # estimated sig event') print('Done.')
商品曝光UV_CTR:商品点击UV/商品曝光UV 原始收订账户数:指当前查询的应用类型,带来的全部收订账户,收订账户根据用户账号id进行统计 原始收订行数: 原始订单行数:指当前查询的模块,带来的订单行数 订单行占比:指当前查询的模块,所产生的原始订单行数占全站订单行数的比例。 公式=原始订单行数/全站订单行数 PV订单转换率: UV订单转化率:指当前查询的模块,带来的订单行数占推荐商品的点击UV的比例。 公式=原始订单行数/原始点击UV 最大曝光位置:指当前查询的模块,商品的最深曝光位置。依据商品曝光以及坑位顺序统计 平均浏览位置:指当前查询的模块,商品的平均曝光位置 最大点击位置:指当前查询的模块,商品的最深点击位置 平均点击位置:指当前查询的模块,商品的平均点击深度 人均点击位置:商品点击PV/商品点击UV ''' #日志设置 reco = log.set_logger('reco.txt') #推荐conn conn_ck = util.connect_clickhouse(host='10.7.30.177') def ck_vs_davi(webdata,filters): '''达芬奇数据和ck数据比对''' filterdict=dict(filters) data={} if len(webdata)>0: i=0 for data in webdata: if data['商品ID']=='-1': data={} continue if data.__contains__('商品PV点击率') and data['商品PV点击率'] is not None :
def main(): # BASIC SETUP logger = set_logger() args = GB_parse_args( main_description= "Training launcher for Gradient boosting on S3D2 benchmark") logger.info(args) flush(logger) # Config config = Config() config.TRUE = Parameter(rescale=0.9, mu=0.1) train_generator = Generator(SEED) valid_generator = Generator(SEED + 1) test_generator = Generator(SEED + 2) X_test, y_test, w_test = test_generator.generate( *config.TRUE, n_samples=config.N_TESTING_SAMPLES) # for nuisance in p(nuisance | data) nuisance_param_sample = [ param_generator().nuisance_parameters for _ in range(25) ] average_list = [] variance_list = [] result_table = [] for nuisance_params in nuisance_param_sample: logger.info(f"nuisance_params = {nuisance_params}") estimator_values = [] for i_cv in range(N_ITER): clf = build_model(args, i_cv) parameters = Parameter(*nuisance_params, config.CALIBRATED.interest_parameters) print(parameters) n_samples = config.N_TRAINING_SAMPLES X_train, y_train, w_train = train_generator.generate( *parameters, n_samples=n_samples) logger.info(f"Training {clf.full_name}") clf.fit(X_train, y_train, w_train) compute_summaries = ClassifierSummaryComputer(clf, n_bins=10) nll_computer = NLLComputer(compute_summaries, valid_generator, X_test, w_test, config=config) compute_nll = lambda mu: nll_computer(*nuisance_params, mu) minimizer = get_minimizer(compute_nll) results = evaluate_minuit(minimizer, [config.TRUE.interest_parameters]) estimator_values.append(results['mu']) results['i_cv'] = i_cv results.update(params_to_dict(parameters, suffix='true')) result_table.append(results.copy()) average_list.append(np.mean(estimator_values)) variance_list.append(np.var(estimator_values)) model = build_model(args, 0) model.set_info(DATA_NAME, BENCHMARK_NAME, 0) save_directory = model.results_path os.makedirs(save_directory, exist_ok=True) result_table = pd.DataFrame(result_table) result_table.to_csv(os.path.join(save_directory, 'results.csv')) logger.info(f"average_list {average_list}") logger.info(f"variance_list {variance_list}") v_stat = np.mean(variance_list) v_syst = np.var(average_list) v_total = v_stat + v_syst logger.info(f"V_stat = {v_stat}") logger.info(f"V_syst = {v_syst}") logger.info(f"V_total = {v_total}") eval_dict = {"V_stat": v_stat, "V_syst": v_syst, "V_total": v_total} eval_path = os.path.join(save_directory, 'info.json') with open(eval_path, 'w') as f: json.dump(eval_dict, f)
from utils import util, log from kafka import KafkaProducer import json import requests, pymysql from utils.decorate import complog from utils.util import simplediff #日志设置 oper = log.set_logger('operation.txt') #mysql conn mysql_cursor = util.connect_mysql(host="10.255.254.225", port=3308, user="******", password="******", database="ioc_adm") ck_client = util.client_ck(host='10.7.30.148', user='******', password='******', database='ioc') #ck conn #kafka集群地址 kafka_hosts = [ '10.255.242.91:9092', '10.255.242.92:9092', '10.255.242.93:9092', '10.255.242.94:9092', '10.255.242.95:9092' ] TableName = 'smart_cust_detail' CkTableName = 'ioc.user_tag_base_info_all' mysql_table = 'ioc_adm.smart_cust_detail'
except requests.exceptions.ConnectionError as e: error_code = 521 request_info = "{},{},{},{},{}/{},{},{},{},{},\"{}\",{}".format( datetime.now(), ip, token, resource_method, request_path, path_param, cookie, accept, content_type, ip, random_user_agent, error_code) util_methods.write_to_file(dataset_path, request_info, "a") logger.error("Connection Error: {}".format(e)) except requests.exceptions.RequestException: logger.exception("Request Failure") # Program Execution if __name__ == '__main__': logger = log.set_logger('Extreme_Delete') try: with open( os.path.abspath( os.path.join(__file__, "../../../../../config/api_details.yaml")), "r") as config_file: config = yaml.load(config_file, Loader=yaml.FullLoader) with open( os.path.abspath( os.path.join(__file__, "../../../../../config/attack-tool.yaml")), "r") as attack_config_file: attack_config = yaml.load(attack_config_file, Loader=yaml.FullLoader)
import torch.nn.functional as F import sys import os from tqdm import tqdm import time import argparse import numpy as np from utils.log import set_logger from utils.checkpoint import Checkpointer from utils.pca import PCAW import net.network as ntk from data.dataloader import get_loader logger = set_logger("extractor") nets = { "alexnet": ntk.AlexNet, "vggnet": ntk.VGGNet, "resnet": ntk.ResNet, } def extract_image_feature(args): try: model = nets[args.net]() model.to(args.device) except Exception as e: logger.error("Initialize {} error: {}".format(args.net, e)) return logger.info("Extracting {} feature.".format(args.net))
accept, content_type, random_ip, random_user_agent, error_code, ) util_methods.write_to_file(dataset_path, request_info, "a") logger.error("Connection Error: {}".format(e)) except requests.exceptions.RequestException: logger.exception("Request Failure") # Program Execution if __name__ == '__main__': logger = log.set_logger("Stolen_TOKEN") # Constants STOLEN_TOKEN = 'stolen_token' try: with open( os.path.abspath( os.path.join( __file__, "../../../../traffic-tool/data/runtime_data/scenario_pool.sav" )), "rb") as scenario_file: scenario_pool = pickle.load(scenario_file, ) with open( os.path.abspath(
def main(): log.set_logger(logger) logger.debug('Solr piper starting') prometheus_instrumentation.start_http_server(9901) solr_piper = SolrPiper(SOLR_GROUP_ID) solr_piper.consume_pipe()
#encoding=utf-8 import json import requests from utils import util, log from db.map.report_map import path1_name from api.service.report import report_api_bussiness_post from db.dao.report import report_sql from utils import decorate #日志logger report = log.set_logger('report.txt') @util.retry(2) def get_pathlist(level=1, parentid=0): api = "http://10.4.32.223:8085/api/v3/reportForm/categoryList?level={}&parentId={}".format( level, parentid) s = requests.Session() req = s.get(url=api) apiresult = json.loads(req.content.decode('utf-8')) apiresult_list = apiresult['payload']['list'] apilist = [] if apiresult_list != []: for ele in apiresult_list: apilist.append(ele['path']) return apilist def get_all_path_list(): categorylist = []