phase_space = phase_space.phase_space() if crash_checker == 'yes': if crash_thrsh == 'yes': crsh_chker = check4particle_soft_crash(rthrsh0, pthrsh0, rthrsh, pthrsh, crash_path) else: crsh_chker = check4particle_hard_crash(rthrsh, pthrsh, crash_path) else: crsh_chker = check4particle_crash_dummy(rthrsh0, pthrsh0, rthrsh, pthrsh, crash_path) linear_integrator_obj = linear_integrator(MD_parameters.integrator_method, crsh_chker) hamiltonian_obj = make_hamiltonian(hamiltonian_type, tau_long, ML_parameters) if hamiltonian_type != "noML": # use prediction for ML chk_pt = checkpoint(hamiltonian_obj.get_netlist( )) # opt = None, sch = None ; for test, don't need opt, sch if load_model_file is not None: chk_pt.load_checkpoint(load_model_file) hamiltonian_obj.eval() hamiltonian_obj.requires_grad_false() init_qpl, _, _ = data_io.read_trajectory_qpl(MC_init_config_filename) # init_qp_bs.shape = [nsamples, 3=(q, p, boxsize), 1, nparticle, DIM] init_q = torch.squeeze(init_qpl[:, 0, 0, :, :], dim=1) # init_q.shape = [nsamples, nparticle, DIM] init_p = torch.squeeze(init_qpl[:, 1, 0, :, :], dim=1)
crsh_chker = check4particle_hard_crash(rthrsh, pthrsh, crash_path) else: crsh_chker = check4particle_crash_dummy(rthrsh0, pthrsh0, rthrsh, pthrsh, crash_path) linear_integrator_obj = linear_integrator(MD_parameters.integrator_method, crsh_chker) # don't check crash to make input into fhnn linear_integrator_dummy_obj = linear_integrator( MD_parameters.integrator_method, check4particle_crash_dummy(rthrsh0, pthrsh0, rthrsh, pthrsh, crash_path)) hamiltonian_obj = make_hamiltonian(hamiltonian_type, linear_integrator_dummy_obj, tau_short, tau_long, ML_parameters) if hamiltonian_type != "noML": # use crash chk_pt = checkpoint(hamiltonian_obj.get_netlist( )) # opt = None, sch = None ; for test, don't need opt, sch if load_model_file is not None: chk_pt.load_checkpoint(load_model_file) hamiltonian_obj.eval() hamiltonian_obj.requires_grad_false() init_qp, _, _, boxsize = data_io.read_trajectory_qp( MC_init_config_filename) # init_qp.shape = [nsamples, (q, p), 1, nparticle, DIM] init_q = torch.squeeze(init_qp[:, 0, 0, :, :], dim=1) # init_q.shape = [nsamples, nparticle, DIM]