예제 #1
0
    def _rate_predictions(self, predictions):
        assert len(predictions) > 0

        (px, py) = predictions[-1]

        if len(self._yield_set) > 0:
            robot_name = list(self._yield_set)[0]
            rx = self._states[robot_name]['x']
            ry = self._states[robot_name]['y']

            return 1.0 - MeasurementUtils.distance(px, py, rx, ry) / (self.CRUISE_SPEED * PredictionUtils.CIRCLES_DELTA * PredictionUtils.CIRCLES_NUM * 0.5)
        else:
            tx, ty = self._target[0]
            return MeasurementUtils.distance(px, py, tx, ty)
예제 #2
0
    def _rate_predictions(self, predictions):
        assert len(predictions) > 0

        (px, py) = predictions[-1]

        if len(self._yield_set) > 0:
            robot_name = list(self._yield_set)[0]
            rx = self._states[robot_name]['x']
            ry = self._states[robot_name]['y']

            return 1.0 - MeasurementUtils.distance(px, py, rx, ry) / (self.CRUISE_SPEED * PredictionUtils.CIRCLES_DELTA * PredictionUtils.CIRCLES_NUM * 0.5)
        else:
            tx, ty = self._target[0]
            return MeasurementUtils.distance(px, py, tx, ty)
예제 #3
0
    def _compute_fear_factors(self):
        self._fear_factors = {}

        for robot_name, state in self._states.items():
            x = state['x']
            y = state['y']
            theta = state['theta']
            fear_factor = state['fear_factor']
		
            for robot_name2, state2 in self._states.items():
                if robot_name == robot_name2:
                    continue

                x2 = state2['x']
                y2 = state2['y']
                theta2 = state2['theta']

                dist = MeasurementUtils.distance(x, y, x2, y2)
                if dist > FearfulAlgorithm.FF_RADIUS:
                    continue

                angle_diff = abs(MeasurementUtils.normalize_angle(theta - theta2))

                if angle_diff > 0.5 * math.pi:
                    continue

                fear_factor += (1 - dist / FearfulAlgorithm.FF_RADIUS) * math.cos(angle_diff) \
                    * self._states[robot_name]['fear_factor']

            self._fear_factors[robot_name] = fear_factor
예제 #4
0
    def _compute_fear_factors(self):
        self._fear_factors = {}

        for robot_name, state in self._states.items():
            x = state['x']
            y = state['y']
            theta = state['theta']
            fear_factor = state['fear_factor']

            for robot_name2, state2 in self._states.items():
                if robot_name == robot_name2:
                    continue

                x2 = state2['x']
                y2 = state2['y']
                theta2 = state2['theta']

                dist = MeasurementUtils.distance(x, y, x2, y2)
                if dist > FearfulAlgorithm.FF_RADIUS:
                    continue

                angle_diff = abs(MeasurementUtils.normalize_angle(theta - theta2))

                if angle_diff > 0.5 * math.pi:
                    continue

                fear_factor += (1 - dist / FearfulAlgorithm.FF_RADIUS) * math.cos(angle_diff) \
                    * self._states[robot_name]['fear_factor']

            self._fear_factors[robot_name] = fear_factor
예제 #5
0
    def _cut_predictions(predictions, target):
        (tx, ty) = target

        for i in range(len(predictions)):
            (px, py) = predictions[i]
            if MeasurementUtils.distance(px, py, tx, ty) < 0.2:
                return predictions[:i+1] + [(px, py)] * (len(predictions) - i - 1)

        return predictions
예제 #6
0
    def _cut_predictions(predictions, target):
        (tx, ty) = target

        for i in range(len(predictions)):
            (px, py) = predictions[i]
            if MeasurementUtils.distance(px, py, tx, ty) < 0.2:
                return predictions[:i+1] + [(px, py)] * (len(predictions) - i - 1)

        return predictions
예제 #7
0
    def _target_distance(self):
        assert type(self._target) == type([])
        assert len(self._target) > 0

        (tx, ty) = self._target[0]
        mx = self._own_robot['x']
        my = self._own_robot['y']

        return MeasurementUtils.distance(tx, ty, mx, my)
예제 #8
0
    def _target_distance(self):
        assert type(self._target) == type([])
        assert len(self._target) > 0

        (tx, ty) = self._target[0]
        mx = self._own_robot['x']
        my = self._own_robot['y']

        return MeasurementUtils.distance(tx, ty, mx, my)
예제 #9
0
    def _navigate2(self, avail_time):
        dist = None

	x = self._own_robot['x']
        y = self._own_robot['y']
        theta = self._own_robot['theta']
        Otheta = self._own_robot['org_theta']
        Otheta = 1.57 - Otheta;
	v = FearfulAlgorithm.CRUISE_SPEED        
 
	if self._target is None:
            tx, ty = self._controller.get_new_target()
            self._target = self._maze_util.find_path((x, y), (tx, ty))

        target1 = self._target[0]
        tx, ty = target1

	bearing = math.atan2(ty - y, tx - x)
	target_dist = MeasurementUtils.distance(x, y, tx, ty)
	
	Vl, Vr = FearfulAlgorithm._get_wheel_speeds_new2(self._logger,v,Otheta,bearing,False,target_dist)	
	#self._send_robot_command(RobotCommand(Vl, Vr, Vl, Vr))
	
	#if bearing < 0:
	#   bearing = bearing * (-1)

	#target_dist = MeasurementUtils.distance(x, y, tx, ty)	
	#Vl = 0.0
	#Vr = 0.0 

	#self._logger.info('ORG THETA: %f' % ( Otheta))

	#self._logger.info("FindIntersction1 Vl: %f; Vr: %f; v: %f; theta: %f; bearing: %f; target_distance: %f; sub: %f" % (Vl, Vr, v, Otheta, bearing, target_dist, Otheta - bearing))
        #Vl, Vr = FearfulAlgorithm._get_wheel_speeds_new2(v,theta,bearing,False,target_dist)

	#if Otheta < -3.14:
	#   Otheta = Otheta +  6.28
	#elif Otheta > 3.14:
	#   Otheta = Otheta - 6.28	   

        #self._logger.info("FindIntersction2 Vl: %f; Vr: %f; v: %f; theta: %f; bearing: %f; target_distance: %f; sub: %f" % (Vl, Vr, v, Otheta, bearing, target_dist,  Otheta + bearing ))
        #self._logger.info("Test!!!!")
        #self._send_robot_command(RobotCommand(Vl, Vr, Vl, Vr))	

        return
예제 #10
0
    def _distances_to_robots(self):
        distances = []

        x = self._own_robot['x']
        y = self._own_robot['y']

        for robot_name, state in self._states.items():
            if robot_name == self._robot_name:
                continue

            rx = state['x']
            ry = state['y']
            distance = MeasurementUtils.distance(x, y, rx, ry)

            distances.append((robot_name, distance))

        distances.sort(key=itemgetter(1))
        return distances
예제 #11
0
    def _distances_to_robots(self):
        distances = []

        x = self._own_robot['x']
        y = self._own_robot['y']

        for robot_name, state in self._states.items():
            if robot_name == self._robot_name:
                continue

            rx = state['x']
            ry = state['y']
            distance = MeasurementUtils.distance(x, y, rx, ry)

            distances.append((robot_name, distance))

        distances.sort(key=itemgetter(1))
        return distances
예제 #12
0
    def _find_intersections(self, own_predictions, radius, ignored_num):
        assert len(own_predictions) > 0

        for (robot_name, other_predictions) in self._predictions.items():
            if self._robot_name == robot_name:
                continue

            if self._fear_factors[self._robot_name] > self._fear_factors[robot_name]:
                continue

            for ((mx, my), (ox, oy)) in zip(own_predictions[ignored_num:], other_predictions[ignored_num:]):
                dst = MeasurementUtils.distance(mx, my, ox, oy)

                if dst <= radius:
                    return True

        maze = self._maze_util.find_intersection(own_predictions, 0.25)

        return maze
예제 #13
0
    def _find_intersections(self, own_predictions, radius, ignored_num):
        assert len(own_predictions) > 0

        for (robot_name, other_predictions) in self._predictions.items():
            if self._robot_name == robot_name:
                continue

            if self._states[self._robot_name]['fear_factor'] > self._states[robot_name]['fear_factor']:
                continue

            for ((mx, my), (ox, oy)) in zip(own_predictions[ignored_num:], other_predictions[ignored_num:]):
                dst = MeasurementUtils.distance(mx, my, ox, oy)

                if dst <= radius:
                    return True

        maze = self._maze_util.find_intersection(own_predictions, 0.25)

        return maze
예제 #14
0
    def _update_states(self):
        new_states = self._controller.request_states()

        if not self._running or len(new_states) == 0:
            return False

        for (robot_name, new_state) in new_states.items():
            org_x = new_state.get_x()
            org_y = new_state.get_y()
            org_theta = new_state.get_theta()
            timestamp = new_state.get_timestamp()
            fear_factor = new_state.get_fear_factor()

            if robot_name not in self._states:
                location_kalman = LocationKalman(org_x, org_y, self.INTERVAL)
                angle_kalman = AngleKalman(org_theta, self.INTERVAL)

                state = {'location_kalman': location_kalman,
                         'angle_kalman': angle_kalman,
                         'timestamp': timestamp,
                         'x': org_x,
                         'y': org_y,
                         'vx': 0.0,
                         'vy': 0.0,
                         'v': 0.0,
                         'theta': org_theta,
                         'omega': 0.0,
                         'epsilon': 0.0,
                         'fear_factor': fear_factor}

                self._states[robot_name] = state

            state = self._states[robot_name]

            location_kalman = state['location_kalman']
            angle_kalman = state['angle_kalman']

            if timestamp > state['timestamp']:
                location_kalman.step(org_x, org_y)
                angle_kalman.step(org_theta)
            else:
                location_kalman.missing_step()
                angle_kalman.missing_step()

            (x, y, vx, vy) = location_kalman.get_means()
            (theta, omega, epsilon) = angle_kalman.get_means()

            v = math.sqrt(vx * vx + vy * vy)

            if robot_name == self._robot_name:
                self._odometer += MeasurementUtils.distance(state['x'], state['y'], x, y)

            state['x'] = x
            state['y'] = y
            state['vx'] = vx
            state['vy'] = vy
            state['v'] = v
            state['theta'] = theta
            state['omega'] = omega
            state['epsilon'] = epsilon
            state['timestamp'] = timestamp
            state['fear_factor'] = fear_factor

            if self._f is not None and robot_name == self._robot_name:
                self._f.write("%i %f %f %f %f %f %f %f %f\n" %
                              (timestamp, x, org_x, y, org_y, v, theta, org_theta, omega))

        if self._robot_name not in self._states:
            return False

        self._own_robot = self._states[self._robot_name]

        return True
예제 #15
0
파일: simple.py 프로젝트: showmen15/masters
    def _navigate(self, avail_time):
        dist = None

        x = self._own_robot['x']
        y = self._own_robot['y']
        theta = self._own_robot['theta']
        v = SimpleAlgorithm.CRUISE_SPEED

        if self._target is None:
            tx, ty = self._controller.get_new_target()
            self._target = self._maze_util.find_path((x, y), (tx, ty))

        if not self._target_reached and self._target_distance() < 0.1:

            if len(self._target) > 1:
                self._target.pop(0)
            else:
                new_target = self._controller.get_new_target()
                if new_target is None or new_target != self._target[0]:
                    tx, ty = new_target
                    self._target = self._maze_util.find_path((x, y), (tx, ty))
                else:
                    self._target_reached = True
                    self._logger.info("Target reached")
                    self.send_finish_msg()

        space_id = self._maze_util.find_space_by_point((x, y))
        if space_id != self._space_id:
            if self._space_id is not None:
                tx, ty = self._target[-1]
                self._target = self._maze_util.find_path((x, y), (tx, ty))

            self._space_id = space_id

        if self._avoid_close_objects(x, y, theta):
            return

        target = self._target[0]
        tx, ty = target
        bearing = MeasurementUtils.angle(x, y, tx, ty)

        preds = PredictionUtils.predict_positions(x, y, v, bearing, 0.0)
        preds = SimpleAlgorithm._cut_predictions(preds, target)

        self._predictions[self._robot_name] = preds

        target_dist = MeasurementUtils.distance(x, y, tx, ty)

        if not self._find_intersections(preds, self.CIRCLES_RADIUS * 1.5, 0):
            self._own_fear_factor = self._base_fear_factor

            v, omega = SimpleAlgorithm._navigate_fun(v, theta, bearing, False)

            if target_dist < 0.2:
                v *= target_dist

            if target_dist < 0.05:
                v = 0

            Vl, Vr = SimpleAlgorithm._get_wheel_speeds(v, omega)

            self._send_robot_command(RobotCommand(Vl, Vr, Vl, Vr))

            return

        for robot_name in list(self._yield_set):
            rx = self._states[robot_name]['x']
            ry = self._states[robot_name]['y']
            if MeasurementUtils.distance(x, y, rx, ry) > 2.0:
                self._yield_set.remove(robot_name)

        best_v = None
        best_bearing = None
        best_midpoint = None
        best_rate = None
        best_preds = None
        self._predictions[self._robot_name] = None

        if self._last_params is not None:
            best_v, best_bearing, best_midpoint = self._last_params

            best_preds = PredictionUtils.predict_positions(
                x, y, best_v, best_bearing, 0.0)
            best_preds = SimpleAlgorithm._cut_predictions(
                best_preds, best_midpoint)

            best_rate = self._rate_predictions(best_preds)

            if self._find_intersections(best_preds, self.CIRCLES_RADIUS, 1):
                best_v = None
                best_bearing = None
                best_midpoint = None
                best_rate = None
                best_preds = None

        try_stop = True

        variants_stop_time = time.time() + avail_time - 0.001
        var_num = 0
        while time.time() < variants_stop_time:
            var_num += 1

            if try_stop:
                rand_v = 0.0
                rand_bearing = theta
                rand_radius = 0.0
                try_stop = False
            else:
                rand_v = random.uniform(0.0, self.CRUISE_SPEED * 2.0)
                rand_bearing = random.uniform(-math.pi, math.pi)
                rand_radius = random.uniform(
                    0.0, self.CRUISE_SPEED * PredictionUtils.CIRCLES_DELTA *
                    PredictionUtils.CIRCLES_NUM)

            mp_x = rand_radius * math.cos(rand_bearing) + x
            mp_y = rand_radius * math.sin(rand_bearing) + y
            rand_midpoint = mp_x, mp_y

            rand_preds = PredictionUtils.predict_positions(
                x, y, rand_v, rand_bearing, 0.0)
            rand_preds = SimpleAlgorithm._cut_predictions(
                rand_preds, rand_midpoint)
            rand_rate = self._rate_predictions(rand_preds)

            if self._find_intersections(rand_preds, self.CIRCLES_RADIUS * 1.5,
                                        1):
                continue

            if best_rate is None or rand_rate < best_rate - 0.5:
                best_v, best_bearing, best_preds, best_rate, best_midpoint \
                    = rand_v, rand_bearing, rand_preds, rand_rate, rand_midpoint
                self._last_params = best_v, best_bearing, best_midpoint

        if best_preds is None:
            self._send_stop_command()
            return
        else:
            self._predictions[self._robot_name] = best_preds

            best_v, omega = SimpleAlgorithm._navigate_fun(
                best_v, theta, best_bearing, False)

            mp_x, mp_y = best_midpoint
            midpoint_dist = MeasurementUtils.distance(x, y, mp_x, mp_y)

            if midpoint_dist < 0.5:
                best_v *= midpoint_dist

            Vl, Vr = SimpleAlgorithm._get_wheel_speeds(best_v, omega)

            self._send_robot_command(RobotCommand(Vl, Vr, Vl, Vr))
예제 #16
0
    def _navigate(self, avail_time):
        dist = None

        x = self._own_robot['x']
        y = self._own_robot['y']
        theta = self._own_robot['theta']
        v = SimpleAlgorithm.CRUISE_SPEED

        if self._target is None:
            tx, ty = self._controller.get_new_target()
            self._target = self._maze_util.find_path((x, y), (tx, ty))

        if not self._target_reached and self._target_distance() < 0.1:

            if len(self._target) > 1:
                self._target.pop(0)
            else:
                new_target = self._controller.get_new_target()
                if new_target is None or new_target != self._target[0]:
                    tx, ty = new_target
                    self._target = self._maze_util.find_path((x, y), (tx, ty))
                else:
                    self._target_reached = True
                    self._logger.info("Target reached")
                    self.send_finish_msg()

        space_id = self._maze_util.find_space_by_point((x, y))
        if space_id != self._space_id:
            if self._space_id is not None:
                tx, ty = self._target[-1]
                self._target = self._maze_util.find_path((x, y), (tx, ty))

            self._space_id = space_id


        if self._avoid_close_objects(x, y, theta):
            return

        target = self._target[0]
        tx, ty = target
        bearing = MeasurementUtils.angle(x, y, tx, ty)

        preds = PredictionUtils.predict_positions(x, y, v, bearing, 0.0)
        preds = SimpleAlgorithm._cut_predictions(preds, target)

        self._predictions[self._robot_name] = preds

        target_dist = MeasurementUtils.distance(x, y, tx, ty)

        if not self._find_intersections(preds, self.CIRCLES_RADIUS * 1.5, 0):
            self._own_fear_factor = self._base_fear_factor

            v, omega = SimpleAlgorithm._navigate_fun(v, theta, bearing, False)

            if target_dist < 0.2:
                v *= target_dist

            if target_dist < 0.05:
                v = 0

            Vl, Vr = SimpleAlgorithm._get_wheel_speeds(v, omega)

            self._send_robot_command(
                RobotCommand(Vl, Vr, Vl, Vr))

            return

        for robot_name in list(self._yield_set):
            rx = self._states[robot_name]['x']
            ry = self._states[robot_name]['y']
            if MeasurementUtils.distance(x, y, rx, ry) > 2.0:
                self._yield_set.remove(robot_name)

        best_v = None
        best_bearing = None
        best_midpoint = None
        best_rate = None
        best_preds = None
        self._predictions[self._robot_name] = None

        if self._last_params is not None:
            best_v, best_bearing, best_midpoint = self._last_params

            best_preds = PredictionUtils.predict_positions(x, y, best_v, best_bearing, 0.0)
            best_preds = SimpleAlgorithm._cut_predictions(best_preds, best_midpoint)

            best_rate = self._rate_predictions(best_preds)

            if self._find_intersections(best_preds, self.CIRCLES_RADIUS, 1):
                best_v = None
                best_bearing = None
                best_midpoint = None
                best_rate = None
                best_preds = None

        try_stop = True

        variants_stop_time = time.time() + avail_time - 0.001
        var_num = 0
        while time.time() < variants_stop_time:
            var_num += 1

            if try_stop:
                rand_v = 0.0
                rand_bearing = theta
                rand_radius = 0.0
                try_stop = False
            else:
                rand_v = random.uniform(0.0, self.CRUISE_SPEED * 2.0)
                rand_bearing = random.uniform(-math.pi, math.pi)
                rand_radius = random.uniform(0.0, self.CRUISE_SPEED * PredictionUtils.CIRCLES_DELTA * PredictionUtils.CIRCLES_NUM)

            mp_x = rand_radius * math.cos(rand_bearing) + x
            mp_y = rand_radius * math.sin(rand_bearing) + y
            rand_midpoint = mp_x, mp_y

            rand_preds = PredictionUtils.predict_positions(x, y, rand_v, rand_bearing, 0.0)
            rand_preds = SimpleAlgorithm._cut_predictions(rand_preds, rand_midpoint)
            rand_rate = self._rate_predictions(rand_preds)

            if self._find_intersections(rand_preds, self.CIRCLES_RADIUS * 1.5, 1):
                continue

            if best_rate is None or rand_rate < best_rate - 0.5:
                best_v, best_bearing, best_preds, best_rate, best_midpoint \
                    = rand_v, rand_bearing, rand_preds, rand_rate, rand_midpoint
                self._last_params = best_v, best_bearing, best_midpoint

        if best_preds is None:
            self._send_stop_command()
            return
        else:
            self._predictions[self._robot_name] = best_preds

            best_v, omega = SimpleAlgorithm._navigate_fun(best_v, theta, best_bearing, False)

            mp_x, mp_y = best_midpoint
            midpoint_dist = MeasurementUtils.distance(x, y, mp_x, mp_y)


            if midpoint_dist < 0.5:
                best_v *= midpoint_dist

            Vl, Vr = SimpleAlgorithm._get_wheel_speeds(best_v, omega)

            self._send_robot_command(
                RobotCommand(Vl, Vr, Vl, Vr))
예제 #17
0
    def _navigate(self, avail_time):
        dist = None

	#self._logger.info("Nowy kod")

        x = self._own_robot['x']
        y = self._own_robot['y']
        theta = self._own_robot['theta']
	Otheta = self._own_robot['org_theta']	
	Otheta = 1.57 - Otheta

        v = FearfulAlgorithm.CRUISE_SPEED

        if self._target is None:
            tx, ty = self._controller.get_new_target()
            self._target = self._maze_util.find_path((x, y), (tx, ty))

        if not self._target_reached and self._target_distance() < FearfulAlgorithm.DISTANCE_GOAL:

            if len(self._target) > 1:
                self._target.pop(0)
            else:
                new_target = self._controller.get_new_target()
                if new_target is None or new_target != self._target[0]:
                    tx, ty = new_target
                    self._target = self._maze_util.find_path((x, y), (tx, ty))
                else:
                    self._target_reached = True
                    self._logger.info("Target reached")
                    self.send_finish_msg()

        space_id = self._maze_util.find_space_by_point((x, y))
        if space_id != self._space_id:
            if self._space_id is not None:
                tx, ty = self._target[-1]
                self._target = self._maze_util.find_path((x, y), (tx, ty))

            self._space_id = space_id

        # ominiecie robota lub robotow
        if self._avoid_close_objects(x, y, theta,Otheta):
            return

        target = self._target[0]
        tx, ty = target
        bearing = MeasurementUtils.angle(x, y, tx, ty)
	bearingNew = math.atan2(ty - y, tx - x) #tylko dla nawigacji

        preds = PredictionUtils.predict_positions(x, y, v, bearing, 0.0)
        preds = FearfulAlgorithm._cut_predictions(preds, target)

        self._predictions[self._robot_name] = preds

        target_dist = MeasurementUtils.distance(x, y, tx, ty)

        if not self._find_intersections(preds, self.CIRCLES_RADIUS * 1.5, 0):
            self._own_fear_factor = self._base_fear_factor

	    self._logger.info("find intersectio")
	    Vl, Vr = FearfulAlgorithm._get_wheel_speeds_new2(self._logger,v,Otheta,bearingNew,False,target_dist)
	    self._send_robot_command(RobotCommand(Vl, Vr, Vl, Vr))
            
	    #v, omega = FearfulAlgorithm._navigate_fun(v, theta, bearing, False)

            #if target_dist < 0.2:
            #    v *= target_dist

            #if target_dist < 0.05:
            #    v = 0

            ##Vl, Vr = FearfulAlgorithm._get_wheel_speeds(v, omega)

            #Vl, Vr = FearfulAlgorithm._get_wheel_speeds_new2(v,Otheta,bearing,False,target_dist,tx - x,ty - y)
	    #self._logger.info("FindIntersction Vl: %f; Vr: %f; v: %f; theta: %f; bearing: %f; target_distance: %f; sub: %f,x: %f, y: %f" % (Vl, Vr, v, Otheta, bearing, target_dist, Otheta - bearing,x,y))

            #self._send_robot_command(RobotCommand(Vl, Vr, Vl, Vr))

            return

        for robot_name in list(self._yield_set):
            rx = self._states[robot_name]['x']
            ry = self._states[robot_name]['y']
            if MeasurementUtils.distance(x, y, rx, ry) > 2.0:
                self._yield_set.remove(robot_name)

        best_v = None
        best_bearing = None
        best_midpoint = None
        best_rate = None
        best_preds = None
        self._predictions[self._robot_name] = None

        if self._last_params is not None:
            best_v, best_bearing, best_midpoint = self._last_params

            best_preds = PredictionUtils.predict_positions(x, y, best_v, best_bearing, 0.0)
            best_preds = FearfulAlgorithm._cut_predictions(best_preds, best_midpoint)

            best_rate = self._rate_predictions(best_preds)

            if self._find_intersections(best_preds, self.CIRCLES_RADIUS, 1):
                best_v = None
                best_bearing = None
                best_midpoint = None
                best_rate = None
                best_preds = None

        try_stop = True

        variants_stop_time = time.time() + avail_time - 0.001
        var_num = 0
        while time.time() < variants_stop_time:
            var_num += 1

            if try_stop:
                rand_v = 0.0
                rand_bearing = theta
                rand_radius = 0.0
                try_stop = False
            else:
                rand_v = random.uniform(0.0, self.CRUISE_SPEED * 2.0)
                rand_bearing = random.uniform(-math.pi, math.pi)
                rand_radius = random.uniform(0.0, self.CRUISE_SPEED * PredictionUtils.CIRCLES_DELTA * PredictionUtils.CIRCLES_NUM)

            mp_x = rand_radius * math.cos(rand_bearing) + x
            mp_y = rand_radius * math.sin(rand_bearing) + y
            rand_midpoint = mp_x, mp_y

            rand_preds = PredictionUtils.predict_positions(x, y, rand_v, rand_bearing, 0.0)
            rand_preds = FearfulAlgorithm._cut_predictions(rand_preds, rand_midpoint)
            rand_rate = self._rate_predictions(rand_preds)

            if self._find_intersections(rand_preds, self.CIRCLES_RADIUS * 1.5, 1):
                continue

            if best_rate is None or rand_rate < best_rate - 0.5:
                best_v, best_bearing, best_preds, best_rate, best_midpoint \
                    = rand_v, rand_bearing, rand_preds, rand_rate, rand_midpoint
                self._last_params = best_v, best_bearing, best_midpoint

        if best_preds is None:
	    self._logger.info("best pred is None -->>>>> Stop command:")
            self._send_stop_command()
            return
        else:
            self._predictions[self._robot_name] = best_preds

            #best_v, omega = FearfulAlgorithm._navigate_fun(best_v, theta, best_bearing, False)

            mp_x, mp_y = best_midpoint
            midpoint_dist = MeasurementUtils.distance(x, y, mp_x, mp_y)


            #if midpoint_dist < 0.5:
            #    best_v *= midpoint_dist

            #Vl, Vr = FearfulAlgorithm._get_wheel_speeds(best_v, omega)

            ##Vl, Vr = FearfulAlgorithm._get_wheel_speeds_new2(v,Otheta,best_bearing,False,target_dist, mp_x - x, mp_y - y)	   
            ##self._logger.info("Prediction Vl: %f; Vr: %f; v: %f; theta: %f; best_bearing: %f; target_distance: %f; sub: %f,x: %f,y: %f" % (Vl, Vr, v, Otheta, best_bearing, target_dist,Otheta - best_bearing,x,y))
	    
	    self._logger.info("Prediction:")
	    Vl, Vr = FearfulAlgorithm._get_wheel_speeds_new2(self._logger,v,Otheta,best_bearing,False,target_dist)
            self._send_robot_command(RobotCommand(Vl, Vr, Vl, Vr))
예제 #18
0
    def _update_states(self):
        new_states = self._controller.request_states()

        if not self._running or len(new_states) == 0:
            return False

        for (robot_name, new_state) in new_states.items():
            org_x = new_state.get_x()
            org_y = new_state.get_y()
            org_theta = new_state.get_theta()
            timestamp = new_state.get_timestamp()
            fear_factor = new_state.get_fear_factor()

	    self._logger.debug("org_theta: %f" % (org_theta))

            if robot_name not in self._states:
                location_kalman = LocationKalman(org_x, org_y, self.INTERVAL)
                angle_kalman = AngleKalman(org_theta, self.INTERVAL)

                state = {'location_kalman': location_kalman,
                         'angle_kalman': angle_kalman,
                         'timestamp': timestamp,
                         'x': org_x,
                         'y': org_y,
                         'vx': 0.0,
                         'vy': 0.0,
                         'v': 0.0,
                         'theta': org_theta,
                         'omega': 0.0,
                         'epsilon': 0.0,
                         'fear_factor': fear_factor,
			 'org_theta': org_theta}

                self._states[robot_name] = state

            state = self._states[robot_name]

            location_kalman = state['location_kalman']
            angle_kalman = state['angle_kalman']

            if timestamp > state['timestamp']:
                location_kalman.step(org_x, org_y)
                angle_kalman.step(org_theta)
            else:
                location_kalman.missing_step()
                angle_kalman.missing_step()

            (x, y, vx, vy) = location_kalman.get_means()
            (theta, omega, epsilon) = angle_kalman.get_means()

            v = math.sqrt(vx * vx + vy * vy)

            if robot_name == self._robot_name:
                self._odometer += MeasurementUtils.distance(state['x'], state['y'], x, y)

            state['x'] = x
            state['y'] = y
            state['vx'] = vx
            state['vy'] = vy
            state['v'] = v
            state['theta'] = theta
            state['omega'] = omega
            state['epsilon'] = epsilon
            state['timestamp'] = timestamp
            state['fear_factor'] = fear_factor
	    state['org_theta'] = org_theta

            if self._f is not None and robot_name == self._robot_name:
                self._f.write("%i %f %f %f %f %f %f %f %f\n" %
                              (timestamp, x, org_x, y, org_y, v, theta, org_theta, omega))

        if self._robot_name not in self._states:
            return False

        self._own_robot = self._states[self._robot_name]

        return True