def generate_name_of_result_folder(args): global_opts = get_global_opts() results_path = os.path.join(global_opts['result_path'], 'cluster-training') if 'vis' == args['startnet']: startnetstr = 'map1' elif 'cs' == args['startnet']: startnetstr = 'map0' elif 'pola' == args['startnet']: startnetstr = 'map2' else: startnetstr = 'other' cluster_str = 'features%d' % (args['max_features_per_image']) if args['feature_hinge_loss_weight'] == 0: result_folder = 'cluster-%s-%s-cn%d-ci%d-vi%d' % ( args['corr_set'], startnetstr, args['n_clusters'], args['cluster_interval'], args['val_interval']) else: result_folder = 'cluster-%s-%s-cn%d-ci%d-vi%d-ws%.5f-wf%.5f-%s-valm' % ( args['corr_set'], startnetstr, args['n_clusters'], args['cluster_interval'], args['val_interval'], args['seg_loss_weight'], args['feature_hinge_loss_weight'], cluster_str) return os.path.join(results_path, result_folder), os.path.join( global_opts['result_path'], result_folder)
def get_path_of_startnet(args): global_opts = get_global_opts() if args['startnet'] == 'vis': return os.path.join(global_opts['result_path'], 'base-networks', 'pspnet101_cs_vis.pth') elif args['startnet'] == 'cs': return os.path.join(global_opts['result_path'], 'base-networks', 'pspnet101_cityscapes.pth')
def get_path_of_startnet(args): global_opts = get_global_opts() if args['include_vistas']: if args['corr_set'] == 'rc': return os.path.join(global_opts['result_path'], 'base-networks', 'pspnet101_cs_vis_rc.pth') elif args['corr_set'] == 'cmu': return os.path.join(global_opts['result_path'], 'base-networks', 'pspnet101_cs_vis_cmu.pth') else: if args['corr_set'] == 'rc': return os.path.join(global_opts['result_path'], 'base-networks', 'pspnet101_cs_rc.pth') elif args['corr_set'] == 'cmu': return os.path.join(global_opts['result_path'], 'base-networks', 'pspnet101_cs_cmu.pth')
def generate_name_of_result_folder(args): global_opts = get_global_opts() results_path = os.path.join(global_opts['result_path'], 'corr-training') if args['classes_to_ignore'] is None: ignore_classes = 0 else: ignore_classes = 1 if (args['corr_loss_type'] == 'class') or (args['corr_loss_type'] == 'KL'): args['feat_dist_threshold_match'] = 0 args['feat_dist_threshold_nomatch'] = 0 result_folder = 'corr-%s-map%d-%s-w%.5f-%.2f-%.2f-%d-%d-%d-seg-w%.5f-%.10flr' % ( args['corr_set'], args['include_vistas'], args['corr_loss_type'], args['corr_loss_weight'], args['feat_dist_threshold_match'], args['feat_dist_threshold_nomatch'], args['n_iterations_before_corr_loss'], ignore_classes, args['remove_same_class'], args['seg_loss_weight'], args['lr']) return os.path.join(results_path, result_folder)
] network_folder = args['network_file'][:slash_inds[-1]] network_file = args['network_file'] # folder should have same name as for trained network if args['validation_metric'] == 'miou': save_folder = os.path.join(network_folder, args['save_folder_name']) elif args['validation_metric'] == 'acc': save_folder = os.path.join(network_folder, args['save_folder_name'] + '_acc') segment_images_in_folder(network_file, args['img_path'], save_folder, args) if __name__ == '__main__': global_opts = get_global_opts() args = { 'use_gpu': True, # 'miou' (miou over classes present in validation set), 'acc' 'validation_metric': 'miou', 'img_set': '', # ox-vis, cmu-vis, wilddash , ox, cmu, cityscapes overwriter img_path, img_ext and save_folder_name. Set to empty string to ignore 'img_path': '/semseg/testimg/val', # 'img_ext': '.png', 'img_ext': '.jpg', 'save_folder_name':