예제 #1
0
 def __init__(self, network, depth, dataset, model=None):
     self._network = network
     self._depth = depth
     self._dataset = dataset
     self.model = model
     self.masks = None
     if self.model is None:
         self.model = get_network(network, depth, dataset)
예제 #2
0
def init_network(config, logger, device, imagenet=True):
    net = get_network(network=config.network,
                      depth=config.depth,
                      dataset=config.dataset)

    if imagenet:
        if config.network == "resnet" or config.network == "resnet_bottle":
            if config.depth == 18:
                net = resnet18(pretrained=True)
            elif config.depth == 50:
                net = resnet50(pretrained=True)
            bottleneck_net = BottleneckResNetImagenet

    else:
        print('==> Loading checkpoint from %s.' % config.load_checkpoint)
        logger.info('==> Loading checkpoint from %s.' % config.load_checkpoint)
        checkpoint = torch.load(config.load_checkpoint)
        if checkpoint.get('args', None) is not None:
            args = checkpoint['args']
            print('** [%s-%s%d] Acc: %.2f%%, Epoch: %d, Loss: %.4f' %
                  (args.dataset, args.network, args.depth, checkpoint['acc'],
                   checkpoint['epoch'], checkpoint['loss']))
            logger.info(
                '** [%s-%s%d] Acc: %.2f%%, Epoch: %d, Loss: %.4f' %
                (args.dataset, args.network, args.depth, checkpoint['acc'],
                 checkpoint['epoch'], checkpoint['loss']))
        state_dict = checkpoint['net'] if checkpoint.get(
            'net', None) is not None else checkpoint['state_dict']
        for key in list(state_dict.keys()):
            if key.startswith('module'):
                state_dict[key[7:]] = state_dict[key]
                state_dict.pop(key)

        net.load_state_dict(state_dict)
        bottleneck_net = get_bottleneck_builder(config.network)

    if config.data_distributed:
        net = nn.parallel.DistributedDataParallel(
            net.cuda(),
            device_ids=[config.local_rank],
            output_device=config.local_rank)
        return net, bottleneck_net
    else:
        net = nn.DataParallel(net)

    return net.to(device), bottleneck_net
def init_network(config, logger, device):
    net = get_network(network=config.network,
                      depth=config.depth,
                      dataset=config.dataset)
    print('==> Loading checkpoint from %s.' % config.checkpoint)
    logger.info('==> Loading checkpoint from %s.' % config.checkpoint)
    checkpoint = torch.load(config.checkpoint)
    if checkpoint.get('args', None) is not None:
        args = checkpoint['args']
        print('** [%s-%s%d] Acc: %.2f%%, Epoch: %d, Loss: %.4f' % (args.dataset, args.network, args.depth,
                                                                   checkpoint['acc'], checkpoint['epoch'],
                                                                   checkpoint['loss']))
        logger.info('** [%s-%s%d] Acc: %.2f%%, Epoch: %d, Loss: %.4f' % (args.dataset, args.network, args.depth,
                                                                         checkpoint['acc'], checkpoint['epoch'],
                                                                         checkpoint['loss']))
    state_dict = checkpoint['net'] if checkpoint.get('net', None) is not None else checkpoint['state_dict']
    net.load_state_dict(state_dict)
    bottleneck_net = get_bottleneck_builder(config.network)

    return net.to(device), bottleneck_net
예제 #4
0
def main(config, args):
    # init logger
    classes = {
        'cifar10': 10,
        'cifar100': 100,
        'mnist': 10,
        'tiny_imagenet': 200
    }
    logger, writer = init_logger(config, args)
    best_acc_vec = []
    test_acc_vec_vec = []

    for n_runs in range(1):
        if args.sigma_w2 != None and n_runs != 0:
            break

        # build model
        model = get_network(config.network,
                            config.depth,
                            config.dataset,
                            use_bn=config.get('use_bn', args.bn),
                            scaled=args.scaled_init,
                            act=args.act)
        mask = None
        mb = ModelBase(config.network, config.depth, config.dataset, model)
        mb.cuda()
        if mask is not None:
            mb.register_mask(mask)
            ratio_vec_ = print_mask_information(mb, logger)

        # preprocessing
        # ====================================== get dataloader ======================================
        trainloader, testloader = get_dataloader(config.dataset,
                                                 config.batch_size, 256, 4)
        # ====================================== fetch configs ======================================
        ckpt_path = config.checkpoint_dir
        num_iterations = config.iterations
        if args.target_ratio == None:
            target_ratio = config.target_ratio
        else:
            target_ratio = args.target_ratio

        normalize = config.normalize
        # ====================================== fetch exception ======================================
        exception = get_exception_layers(
            mb.model, str_to_list(config.exception, ',', int))
        logger.info('Exception: ')

        for idx, m in enumerate(exception):
            logger.info('  (%d) %s' % (idx, m))

        # ====================================== fetch training schemes ======================================
        ratio = 1 - (1 - target_ratio)**(1.0 / num_iterations)
        learning_rates = str_to_list(config.learning_rate, ',', float)
        weight_decays = str_to_list(config.weight_decay, ',', float)
        training_epochs = str_to_list(config.epoch, ',', int)
        logger.info(
            'Normalize: %s, Total iteration: %d, Target ratio: %.2f, Iter ratio %.4f.'
            % (normalize, num_iterations, target_ratio, ratio))
        logger.info('Basic Settings: ')
        for idx in range(len(learning_rates)):
            logger.info('  %d: LR: %.5f, WD: %.5f, Epochs: %d' %
                        (idx, learning_rates[idx], weight_decays[idx],
                         training_epochs[idx]))

        # ====================================== start pruning ======================================
        iteration = 0
        for _ in range(1):
            logger.info(
                '** Target ratio: %.4f, iter ratio: %.4f, iteration: %d/%d.' %
                (target_ratio, ratio, 1, num_iterations))

            # mb.model.apply(weights_init)
            print('#' * 40)
            print('USING {} INIT SCHEME'.format(args.init))
            print('#' * 40)
            if args.init == 'kaiming_xavier':
                mb.model.apply(weights_init_kaiming_xavier)
            elif args.init == 'kaiming':
                if args.act == 'relu' or args.act == 'elu':
                    mb.model.apply(weights_init_kaiming_relu)
                elif args.act == 'tanh':
                    mb.model.apply(weights_init_kaiming_tanh)
            elif args.init == 'xavier':
                mb.model.apply(weights_init_xavier)
            elif args.init == 'EOC':
                mb.model.apply(weights_init_EOC)
            elif args.init == 'ordered':

                def weights_init_ord(m):
                    if isinstance(m, nn.Conv2d):
                        ord_weights(m.weight, sigma_w2=args.sigma_w2)
                        if m.bias is not None:
                            ord_bias(m.bias)
                    elif isinstance(m, nn.Linear):
                        ord_weights(m.weight, sigma_w2=args.sigma_w2)
                        if m.bias is not None:
                            ord_bias(m.bias)
                    elif isinstance(m, nn.BatchNorm2d):
                        # Note that BN's running_var/mean are
                        # already initialized to 1 and 0 respectively.
                        if m.weight is not None:
                            m.weight.data.fill_(1.0)
                        if m.bias is not None:
                            m.bias.data.zero_()

                mb.model.apply(weights_init_ord)
            else:
                raise NotImplementedError

            print("=> Applying weight initialization(%s)." %
                  config.get('init_method', 'kaiming'))
            print("Iteration of: %d/%d" % (iteration, num_iterations))

            if config.pruner == 'SNIP':
                print('=> Using SNIP')
                masks, scaled_masks = SNIP(
                    mb.model,
                    ratio,
                    trainloader,
                    'cuda',
                    num_classes=classes[config.dataset],
                    samples_per_class=config.samples_per_class,
                    num_iters=config.get('num_iters', 1),
                    scaled_init=args.scaled_init)
            elif config.pruner == 'GraSP':
                print('=> Using GraSP')
                masks, scaled_masks = GraSP(
                    mb.model,
                    ratio,
                    trainloader,
                    'cuda',
                    num_classes=classes[config.dataset],
                    samples_per_class=config.samples_per_class,
                    num_iters=config.get('num_iters', 1),
                    scaled_init=args.scaled_init)
            iteration = 0

            ################################################################################
            _masks = None
            _masks_scaled = None
            if not args.bn:
                # build model that has the same weights as the pruned network but with BN now !
                model2 = get_network(config.network,
                                     config.depth,
                                     config.dataset,
                                     use_bn=config.get('use_bn', True),
                                     scaled=args.scaled_init,
                                     act=args.act)
                weights_temp = []
                for layer_old in mb.model.modules():
                    if isinstance(layer_old, nn.Conv2d) or isinstance(
                            layer_old, nn.Linear):
                        weights_temp.append(layer_old.weight)
                idx = 0
                for layer_new in model2.modules():
                    if isinstance(layer_new, nn.Conv2d) or isinstance(
                            layer_new, nn.Linear):
                        layer_new.weight.data = weights_temp[idx]
                        idx += 1

                # Creating a base model with BN included now
                mb = ModelBase(config.network, config.depth, config.dataset,
                               model2)
                mb.cuda()

                _masks = dict()
                _masks_scaled = dict()
                layer_keys_new = []
                for layer in (mb.model.modules()):
                    if isinstance(layer, nn.Conv2d) or isinstance(
                            layer, nn.Linear):
                        layer_keys_new.append(layer)

                for new_keys, old_keys in zip(layer_keys_new, masks.keys()):
                    _masks[new_keys] = masks[old_keys]
                    if args.scaled_init:
                        _masks_scaled[new_keys] = scaled_masks[old_keys]
            ################################################################################

            if _masks == None:
                _masks = masks
                _masks_scaled = scaled_masks

            # ========== register mask ==================
            mb.register_mask(_masks)

            ## ========== debugging ==================

            if args.scaled_init:
                if config.network == 'vgg':
                    print('scaling VGG')
                    mb.scaling_weights(_masks_scaled)

            # ========== save pruned network ============
            logger.info('Saving..')
            state = {
                'net': mb.model,
                'acc': -1,
                'epoch': -1,
                'args': config,
                'mask': mb.masks,
                'ratio': mb.get_ratio_at_each_layer()
            }
            path = os.path.join(
                ckpt_path, 'prune_%s_%s%s_r%s_it%d.pth.tar' %
                (config.dataset, config.network, config.depth, target_ratio,
                 iteration))
            torch.save(state, path)

            # ========== print pruning details ============
            logger.info('**[%d] Mask and training setting: ' % iteration)
            ratio_vec_ = print_mask_information(mb, logger)
            logger.info('  LR: %.5f, WD: %.5f, Epochs: %d' %
                        (learning_rates[iteration], weight_decays[iteration],
                         training_epochs[iteration]))

            results_path = config.summary_dir + args.init + '_sp' + str(
                args.target_ratio).replace('.', '_')
            if args.scaled_init:
                results_path += '_scaled'
            if args.bn:
                results_path += '_bn'

            if args.sigma_w2 != None and args.init == 'ordered':
                results_path += '_sgw2{}'.format(args.sigma_w2).replace(
                    '.', '_')

            results_path += '_' + args.act + '_' + str(config.depth)
            print('saving the ratios')
            print(results_path)
            if not os.path.isdir(results_path): os.mkdir(results_path)
            np.save(results_path + '/ratios_pruned{}'.format(args.seed_tiny),
                    np.array(ratio_vec_))

            # if args.sigma_w2 != None:
            # 	break
            # ========== finetuning =======================
            best_acc, test_acc_vec = train_once(
                mb=mb,
                net=mb.model,
                trainloader=trainloader,
                testloader=testloader,
                writer=writer,
                config=config,
                ckpt_path=ckpt_path,
                learning_rate=learning_rates[iteration],
                weight_decay=weight_decays[iteration],
                num_epochs=training_epochs[iteration],
                iteration=iteration,
                logger=logger,
                args=args)

            best_acc_vec.append(best_acc)
            test_acc_vec_vec.append(test_acc_vec)

            np.save(results_path + '/best_acc{}'.format(args.seed_tiny),
                    np.array(best_acc_vec))
            np.save(results_path + '/test_acc{}'.format(args.seed_tiny),
                    np.array(test_acc_vec_vec))
def main(config, args):
    # init logger
    classes = {
        'cifar10': 10,
        'cifar100': 100,
        'mnist': 10,
        'tiny_imagenet': 200,
        'imagenet': 1000
    }
    logger, writer = init_logger(config)

    # build model
    # model = models.__dict__[config.network]()
    model = get_network(config.network, config.depth, config.dataset, use_bn=config.get('use_bn', args.bn),
                        scaled=args.scaled_init, act=args.act)
    mb = ModelBase(config.network, config.depth, config.dataset, model)
    mb.cuda()

    # preprocessing
    # ====================================== fetch configs ======================================
    ckpt_path = config.checkpoint_dir
    num_iterations = config.iterations

    if args.target_ratio == None:
        target_ratio = config.target_ratio
    else:
        target_ratio = args.target_ratio

    normalize = config.normalize
    # ====================================== fetch exception ======================================
    exception = get_exception_layers(mb.model, str_to_list(config.exception, ',', int))
    logger.info('Exception: ')

    for idx, m in enumerate(exception):
        logger.info('  (%d) %s' % (idx, m))

    # ====================================== fetch training schemes ======================================
    ratio = 1-(1-target_ratio) ** (1.0 / num_iterations)
    learning_rates = str_to_list(config.learning_rate, ',', float)
    weight_decays = str_to_list(config.weight_decay, ',', float)
    training_epochs = str_to_list(config.epoch, ',', int)
    logger.info('Normalize: %s, Total iteration: %d, Target ratio: %.2f, Iter ratio %.4f.' %
                (normalize, num_iterations, target_ratio, ratio))
    logger.info('Basic Settings: ')
    for idx in range(len(learning_rates)):
        logger.info('  %d: LR: %.5f, WD: %.5f, Epochs: %d' % (idx,
                                                              learning_rates[idx],
                                                              weight_decays[idx],
                                                              training_epochs[idx]))


    # ====================================== get dataloader ======================================
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    train_dataset = datasets.ImageFolder(
        config.traindir,
        transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            normalize,
        ]))

    trainloader = torch.utils.data.DataLoader(
        train_dataset, batch_size=config.batch_size, shuffle=True,
        num_workers=16, pin_memory=False, sampler=None)

    # ====================================== start pruning ======================================

    for iteration in range(num_iterations):
        logger.info('** Target ratio: %.4f, iter ratio: %.4f, iteration: %d/%d.' % (target_ratio,
                                                                                    ratio,
                                                                                    iteration,
                                                                                    num_iterations))

        assert num_iterations == 1
        print("=> Applying weight initialization.")
        mb.model.apply(weights_init_kaiming_xavier)

        print("=> Applying weight initialization(%s)." % config.get('init_method', 'kaiming'))
        print("Iteration of: %d/%d" % (iteration, num_iterations))

        if config.pruner == 'SNIP':
            print('=> Using SNIP')
            masks, scaled_masks = SNIP(mb.model, ratio, trainloader, 'cuda',
                                       num_classes=classes[config.dataset],
                                       samples_per_class=config.samples_per_class,
                                       num_iters=config.get('num_iters', 1),
                                       scaled_init=False)
        elif config.pruner == 'GraSP':
            print('=> Using GraSP')
            masks = GraSP(mb.model, ratio, trainloader, 'cuda',
                          num_classes=classes[config.dataset],
                          samples_per_class=config.samples_per_class,
                          num_iters=config.get('num_iters', 1))

        # ========== register mask ==================
        mb.masks = masks
        # ========== save pruned network ============
        logger.info('Saving..')
        state = {
            'net': mb.model,
            'acc': -1,
            'epoch': -1,
            'args': config,
            'mask': mb.masks,
            'ratio': mb.get_ratio_at_each_layer()
        }
        path = os.path.join(ckpt_path, 'prune_%s_%s%s_r%s_it%d.pth.tar' % (config.dataset,
                                                                           config.network,
                                                                           config.depth,
                                                                           target_ratio,
                                                                           iteration))
        torch.save(state, path)

        # ========== print pruning details ============
        logger.info('**[%d] Mask and training setting: ' % iteration)
        print_mask_information(mb, logger)
예제 #6
0
args = parser.parse_args()
# init model
nc = {
    'cifar10': 10,
    'cifar100': 100,
    'mnist':10,
    'fashion-mnist': 10
}
num_classes = nc[args.dataset]

net = get_network(args.network,
                  #depth=args.depth,
                  num_classes=num_classes,
                  growthRate=args.growthRate,
                  compressionRate=args.compressionRate,
                  widen_factor=args.widen_factor,
                  dropRate=args.dropRate,
                  base_width=args.base_width,
                  cardinality=args.cardinality)
print(net)
optim_name = args.optimizer.lower()

net = net.to(args.device)
net = extend(net)

module_names = ''
if hasattr(net, 'features'): 
    module_names = 'features'
elif hasattr(net, 'children'):
    module_names = 'children'
parser.add_argument('--weight_decay', default=3e-3, type=float)
parser.add_argument('--batch_size', default=128, type=float)
parser.add_argument('--network', default='vgg', type=str)
parser.add_argument('--depth', default=19, type=int)
parser.add_argument('--dataset', default='cifar10', type=str)
parser.add_argument('--epoch', default=150, type=int)
parser.add_argument('--decay_every', default=60, type=int)
parser.add_argument('--decay_ratio', default=0.1, type=float)
parser.add_argument('--device', default='cuda', type=str)
parser.add_argument('--resume', '-r', action='store_true')
parser.add_argument('--load_path', default='', type=str)
parser.add_argument('--log_dir', default='runs/pretrain', type=str)
args = parser.parse_args()

# init model
net = get_network(network=args.network, depth=args.depth, dataset=args.dataset)
net = net.to(args.device)

# init dataloader
trainloader, testloader = get_dataloader(dataset=args.dataset,
                                         train_batch_size=args.batch_size,
                                         test_batch_size=256)

# init optimizer and lr scheduler
optimizer = optim.SGD(net.parameters(),
                      lr=args.learning_rate,
                      momentum=0.9,
                      weight_decay=args.weight_decay)
lr_schedule = {
    0: args.learning_rate,
    int(args.epoch * 0.5): args.learning_rate * 0.1,
예제 #8
0
def main(config):
    # init logger
    classes = {
        'cifar10': 10,
        'cifar100': 100,
        'mnist': 10,
        'tiny_imagenet': 200
    }
    logger, writer = init_logger(config)

    # build model
    model = get_network(config.network, config.depth, config.dataset, use_bn=config.get('use_bn', True))
    mask = None
    mb = ModelBase(config.network, config.depth, config.dataset, model)
    mb.cuda()
    if mask is not None:
        mb.register_mask(mask)
        print_mask_information(mb, logger)

    # preprocessing
    # ====================================== get dataloader ======================================
    trainloader, testloader = get_dataloader(config.dataset, config.batch_size, 256, 4, root='/home/wzn/PycharmProjects/GraSP/data')
    # ====================================== fetch configs ======================================
    ckpt_path = config.checkpoint_dir
    num_iterations = config.iterations
    target_ratio = config.target_ratio
    normalize = config.normalize
    # ====================================== fetch exception ======================================
    # exception = get_exception_layers(mb.model, str_to_list(config.exception, ',', int))
    # logger.info('Exception: ')
    #
    # for idx, m in enumerate(exception):
    #     logger.info('  (%d) %s' % (idx, m))

    # ====================================== fetch training schemes ======================================
    ratio = 1 - (1 - target_ratio) ** (1.0 / num_iterations)
    learning_rates = str_to_list(config.learning_rate, ',', float)
    weight_decays = str_to_list(config.weight_decay, ',', float)
    training_epochs = str_to_list(config.epoch, ',', int)
    logger.info('Normalize: %s, Total iteration: %d, Target ratio: %.2f, Iter ratio %.4f.' %
                (normalize, num_iterations, target_ratio, ratio))
    logger.info('Basic Settings: ')
    for idx in range(len(learning_rates)):
        logger.info('  %d: LR: %.5f, WD: %.5f, Epochs: %d' % (idx,
                                                              learning_rates[idx],
                                                              weight_decays[idx],
                                                              training_epochs[idx]))

    # ====================================== start pruning ======================================
    iteration = 0
    for _ in range(1):
        # logger.info('** Target ratio: %.4f, iter ratio: %.4f, iteration: %d/%d.' % (target_ratio,
        #                                                                             ratio,
        #                                                                             1,
        #                                                                             num_iterations))

        mb.model.apply(weights_init)
        print("=> Applying weight initialization(%s)." % config.get('init_method', 'kaiming'))


        # print("Iteration of: %d/%d" % (iteration, num_iterations))
        # masks = GraSP(mb.model, ratio, trainloader, 'cuda',
        #               num_classes=classes[config.dataset],
        #               samples_per_class=config.samples_per_class,
        #               num_iters=config.get('num_iters', 1))
        # iteration = 0
        # print('=> Using GraSP')
        # # ========== register mask ==================
        # mb.register_mask(masks)
        # # ========== save pruned network ============
        # logger.info('Saving..')
        # state = {
        #     'net': mb.model,
        #     'acc': -1,
        #     'epoch': -1,
        #     'args': config,
        #     'mask': mb.masks,
        #     'ratio': mb.get_ratio_at_each_layer()
        # }
        # path = os.path.join(ckpt_path, 'prune_%s_%s%s_r%s_it%d.pth.tar' % (config.dataset,
        #                                                                    config.network,
        #                                                                    config.depth,
        #                                                                    config.target_ratio,
        #                                                                    iteration))
        # torch.save(state, path)

        # # ========== print pruning details ============
        # logger.info('**[%d] Mask and training setting: ' % iteration)
        # print_mask_information(mb, logger)
        # logger.info('  LR: %.5f, WD: %.5f, Epochs: %d' %
        #             (learning_rates[iteration], weight_decays[iteration], training_epochs[iteration]))

        # ========== finetuning =======================
        train_once(mb=mb,
                   net=mb.model,
                   trainloader=trainloader,
                   testloader=testloader,
                   writer=writer,
                   config=config,
                   ckpt_path=ckpt_path,
                   learning_rate=learning_rates[iteration],
                   weight_decay=weight_decays[iteration],
                   num_epochs=training_epochs[iteration],
                   iteration=iteration,
                   logger=logger)
예제 #9
0
parser.add_argument('--TInv', default=100, type=int)


parser.add_argument('--prefix', default=None, type=str)
args = parser.parse_args()

# init model
nc = {
    'cifar10': 10,
    'cifar100': 100
}
num_classes = nc[args.dataset]
net = get_network(args.network,
                  depth=args.depth,
                  num_classes=num_classes,
                  growthRate=args.growthRate,
                  compressionRate=args.compressionRate,
                  widen_factor=args.widen_factor,
                  dropRate=args.dropRate)
net = net.to(args.device)

# init dataloader
trainloader, testloader = get_dataloader(dataset=args.dataset,
                                         train_batch_size=args.batch_size,
                                         test_batch_size=256)

# init optimizer and lr scheduler
optim_name = args.optimizer.lower()
tag = optim_name
if optim_name == 'sgd':
    optimizer = optim.SGD(net.parameters(),
예제 #10
0
# main script
#
# get command-line arguments
args = get_args()

# set random seed for reproducibility
torch.manual_seed(args.seed)

# init model
num_classes = { 'cifar10': 10, 'cifar100': 100 }

net = get_network(
        args.network,
        depth=args.depth,
        num_classes=num_classes[args.dataset],
        growthRate=args.growthRate,
        compressionRate=args.compressionRate,
        widen_factor=args.widen_factor,
        dropRate=args.dropRate,
        hidden_dim=args.hidden_dim
    ).to(args.device)

# init dataloader
trainloader, testloader = get_dataloader(dataset=args.dataset,
                                         train_batch_size=args.batch_size,
                                         test_batch_size=256)
# init optimizer
optim_name = args.optimizer.lower()
tag = optim_name
optimizer = get_optimizer(optim_name, net, args)

# init lr scheduler
예제 #11
0
parser.add_argument('--decay_ratio', default=0.1, type=float)
parser.add_argument('--device', default=0, type=int)
parser.add_argument('--resume', '-r', action='store_true')
parser.add_argument('--load_path', default='', type=str)
parser.add_argument('--log_dir', default='runs/pretrain', type=str)
parser.add_argument('--rank-scale', default=0.0, type=float)
parser.add_argument('--wd2fd', action='store_true')
parser.add_argument('--spectral', action='store_true')
parser.add_argument('--kaiming', action='store_true')
parser.add_argument('--target-ratio', default=0.0, type=float)
parser.add_argument('--auto-resume', action='store_true')
args = parser.parse_args()

# init model
net = get_network(network=args.network,
                  depth=args.depth,
                  dataset=args.dataset,
                  kaiming=args.kaiming)
origpar = parameter_count(net)
print('Original weight count:', origpar)
if args.rank_scale or args.target_ratio:
    if args.network == 'vgg':
        names = [
            str(i) for i, child in enumerate(net.feature)
            if i and type(child) == nn.Conv2d
        ]
        denoms = [
            child.out_channels * child.kernel_size[0] * child.kernel_size[1]
            for child in net.feature if type(child) == nn.Conv2d
        ]

        def compress(model, rank_scale, spectral=False, kaiming=False):