def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, num_batches=0, training=True, num_workers=4, pin_memory=True, config=None, teacher_idx=None, seed=8888): self.batch_size = batch_size self.num_workers = num_workers self.num_batches = num_batches self.training = training self.transform_train = transforms.Compose([ transforms.Resize(256), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.6959, 0.6537, 0.6371), (0.3113, 0.3192, 0.3214)), ]) self.transform_val = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize((0.6959, 0.6537, 0.6371), (0.3113, 0.3192, 0.3214)), ]) self.data_dir = data_dir if config == None: config = ConfigParser.get_instance() cfg_trainer = config['trainer'] self.train_dataset, self.val_dataset = get_clothing1m( config['data_loader']['args']['data_dir'], cfg_trainer, num_samples=self.num_batches * self.batch_size, train=training, # self.train_dataset, self.val_dataset = get_clothing1m(config['data_loader']['args']['data_dir'], cfg_trainer, num_samples=260000, train=training, transform_train=self.transform_train, transform_val=self.transform_val, teacher_idx=teacher_idx, seed=seed) super().__init__(self.train_dataset, batch_size, shuffle, validation_split, num_workers, pin_memory, val_dataset=self.val_dataset)
def __init__(self, num_examp, num_classes=10, beta=0.3): super().__init__() self.num_classes = num_classes self.config = ConfigParser.get_instance() self.USE_CUDA = torch.cuda.is_available() self.target = torch.zeros( num_examp, self.num_classes).cuda() if self.USE_CUDA else torch.zeros( num_examp, self.num_classes) self.beta = beta
def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, num_batches=0, training=True, num_workers=4, pin_memory=True, num_class=50, teacher_idx=None): self.batch_size = batch_size self.num_workers = num_workers self.num_batches = num_batches self.training = training self.transform_train = transforms.Compose([ transforms.RandomCrop(227), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ]) self.transform_val = transforms.Compose([ transforms.CenterCrop(227), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ]) self.transform_imagenet = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(227), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ]) self.data_dir = data_dir config = ConfigParser.get_instance() cfg_trainer = config['trainer'] self.train_dataset, self.val_dataset = get_webvision( config['data_loader']['args']['data_dir'], cfg_trainer, num_samples=self.num_batches * self.batch_size, train=training, transform_train=self.transform_train, transform_val=self.transform_val, num_class=num_class, teacher_idx=teacher_idx) super().__init__(self.train_dataset, batch_size, shuffle, validation_split, num_workers, pin_memory, val_dataset=self.val_dataset)
def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, num_batches=0, training=True, num_workers=4, pin_memory=True, config=None, teacher_idx=None, seed=888): if config is None: config = ConfigParser.get_instance() cfg_trainer = config['trainer'] transform_train = transforms.Compose([ #transforms.ColorJitter(brightness= 0.4, contrast= 0.4, saturation= 0.4, hue= 0.1), transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)), ]) transform_val = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)), ]) self.data_dir = data_dir # cfg_trainer = config['trainer'] noise_file = '%sCIFAR100_%.1f_Asym_%s.json' % ( config['data_loader']['args']['data_dir'], cfg_trainer['percent'], cfg_trainer['asym']) self.train_dataset, self.val_dataset = get_cifar100( config['data_loader']['args']['data_dir'], cfg_trainer, train=training, transform_train=transform_train, transform_val=transform_val, noise_file=noise_file, teacher_idx=teacher_idx, seed=seed) super().__init__(self.train_dataset, batch_size, shuffle, validation_split, num_workers, pin_memory, val_dataset=self.val_dataset)
def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, num_batches=0, training=True, num_workers=4, pin_memory=True, config=None, teacher_idx=None, seed=888): if config == None: config = ConfigParser.get_instance() cfg_trainer = config['trainer'] transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_val = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) self.data_dir = data_dir noise_file = '%sCIFAR10_%.1f_Asym_%s.json' % ( config['data_loader']['args']['data_dir'], cfg_trainer['percent'], cfg_trainer['asym']) self.train_dataset, self.val_dataset = get_cifar10( config['data_loader']['args']['data_dir'], cfg_trainer, train=training, transform_train=transform_train, transform_val=transform_val, noise_file=noise_file, teacher_idx=teacher_idx, seed=seed) super().__init__(self.train_dataset, batch_size, shuffle, validation_split, num_workers, pin_memory, val_dataset=self.val_dataset)