def arg_parse():
    parser = argparse.ArgumentParser(description="GraphPool arguments.")
    io_parser = parser.add_mutually_exclusive_group(required=False)
    io_parser.add_argument("--dataset", dest="dataset", help="Input dataset.")
    benchmark_parser = io_parser.add_argument_group()
    benchmark_parser.add_argument("--bmname",
                                  dest="bmname",
                                  help="Name of the benchmark dataset")
    io_parser.add_argument("--pkl",
                           dest="pkl_fname",
                           help="Name of the pkl data file")

    softpool_parser = parser.add_argument_group()
    softpool_parser.add_argument(
        "--assign-ratio",
        dest="assign_ratio",
        type=float,
        help="ratio of number of nodes in consecutive layers",
    )
    softpool_parser.add_argument("--num-pool",
                                 dest="num_pool",
                                 type=int,
                                 help="number of pooling layers")
    parser.add_argument(
        "--linkpred",
        dest="linkpred",
        action="store_const",
        const=True,
        default=False,
        help="Whether link prediction side objective is used",
    )

    parser_utils.parse_optimizer(parser)

    parser.add_argument("--datadir",
                        dest="datadir",
                        help="Directory where benchmark is located")
    parser.add_argument("--logdir",
                        dest="logdir",
                        help="Tensorboard log directory")
    parser.add_argument("--ckptdir",
                        dest="ckptdir",
                        help="Model checkpoint directory")
    parser.add_argument("--cuda", dest="cuda", help="CUDA.")
    parser.add_argument(
        "--gpu",
        dest="gpu",
        action="store_const",
        const=True,
        default=False,
        help="whether to use GPU.",
    )
    parser.add_argument(
        "--max-nodes",
        dest="max_nodes",
        type=int,
        help=
        "Maximum number of nodes (ignore graghs with nodes exceeding the number.",
    )
    parser.add_argument("--batch-size",
                        dest="batch_size",
                        type=int,
                        help="Batch size.")
    parser.add_argument("--epochs",
                        dest="num_epochs",
                        type=int,
                        help="Number of epochs to train.")
    parser.add_argument(
        "--train-ratio",
        dest="train_ratio",
        type=float,
        help="Ratio of number of graphs training set to all graphs.",
    )
    parser.add_argument(
        "--num_workers",
        dest="num_workers",
        type=int,
        help="Number of workers to load data.",
    )
    parser.add_argument(
        "--feature",
        dest="feature_type",
        help="Feature used for encoder. Can be: id, deg",
    )
    parser.add_argument("--input-dim",
                        dest="input_dim",
                        type=int,
                        help="Input feature dimension")
    parser.add_argument("--hidden-dim",
                        dest="hidden_dim",
                        type=int,
                        help="Hidden dimension")
    parser.add_argument("--output-dim",
                        dest="output_dim",
                        type=int,
                        help="Output dimension")
    parser.add_argument("--num-classes",
                        dest="num_classes",
                        type=int,
                        help="Number of label classes")
    parser.add_argument(
        "--num-gc-layers",
        dest="num_gc_layers",
        type=int,
        help="Number of graph convolution layers before each pooling",
    )
    parser.add_argument(
        "--bn",
        dest="bn",
        action="store_const",
        const=True,
        default=False,
        help="Whether batch normalization is used",
    )
    parser.add_argument("--dropout",
                        dest="dropout",
                        type=float,
                        help="Dropout rate.")
    parser.add_argument(
        "--nobias",
        dest="bias",
        action="store_const",
        const=False,
        default=True,
        help="Whether to add bias. Default to True.",
    )
    parser.add_argument(
        "--weight-decay",
        dest="weight_decay",
        type=float,
        help="Weight decay regularization constant.",
    )

    parser.add_argument("--method",
                        dest="method",
                        help="Method. Possible values: base, ")
    parser.add_argument("--name-suffix",
                        dest="name_suffix",
                        help="suffix added to the output filename")

    parser.set_defaults(
        datadir="data",  # io_parser
        logdir="log",
        ckptdir="ckpt",
        dataset="syn1",
        opt="adam",  # opt_parser
        opt_scheduler="none",
        max_nodes=100,
        cuda="1",
        feature_type="default",
        lr=0.001,
        clip=2.0,
        batch_size=20,
        num_epochs=1000,
        train_ratio=0.8,
        test_ratio=0.1,
        num_workers=1,
        input_dim=10,
        hidden_dim=20,
        output_dim=20,
        num_classes=2,
        num_gc_layers=3,
        dropout=0.0,
        weight_decay=0.005,
        method="base",
        name_suffix="",
        assign_ratio=0.1,
    )
    return parser.parse_args()
예제 #2
0
def arg_parse():
    parser = argparse.ArgumentParser(description="GNN Explainer arguments.")
    io_parser = parser.add_mutually_exclusive_group(required=False)
    io_parser.add_argument("--dataset", dest="dataset", help="Input dataset.")
    benchmark_parser = io_parser.add_argument_group()
    benchmark_parser.add_argument("--bmname",
                                  dest="bmname",
                                  help="Name of the benchmark dataset")
    io_parser.add_argument("--pkl",
                           dest="pkl_fname",
                           help="Name of the pkl data file")

    parser_utils.parse_optimizer(parser)

    parser.add_argument(
        "--clean-log",
        action="store_true",
        help="If true, cleans the specified log directory before running.")
    parser.add_argument("--logdir",
                        dest="logdir",
                        help="Tensorboard log directory")
    parser.add_argument("--ckptdir",
                        dest="ckptdir",
                        help="Model checkpoint directory")
    parser.add_argument("--cuda", dest="cuda", help="CUDA.")
    parser.add_argument(
        "--gpu",
        dest="gpu",
        action="store_const",
        const=True,
        default=False,
        help="whether to use GPU.",
    )
    parser.add_argument("--epochs",
                        dest="num_epochs",
                        type=int,
                        help="Number of epochs to train.")
    parser.add_argument("--hidden-dim",
                        dest="hidden_dim",
                        type=int,
                        help="Hidden dimension")
    parser.add_argument("--output-dim",
                        dest="output_dim",
                        type=int,
                        help="Output dimension")
    parser.add_argument(
        "--num-gc-layers",
        dest="num_gc_layers",
        type=int,
        help="Number of graph convolution layers before each pooling",
    )
    parser.add_argument(
        "--bn",
        dest="bn",
        action="store_const",
        const=True,
        default=False,
        help="Whether batch normalization is used",
    )
    parser.add_argument("--dropout",
                        dest="dropout",
                        type=float,
                        help="Dropout rate.")
    parser.add_argument(
        "--nobias",
        dest="bias",
        action="store_const",
        const=False,
        default=True,
        help="Whether to add bias. Default to True.",
    )
    parser.add_argument(
        "--no-writer",
        dest="writer",
        action="store_const",
        const=False,
        default=True,
        help="Whether to add bias. Default to True.",
    )
    # Explainer
    parser.add_argument("--mask-act",
                        dest="mask_act",
                        type=str,
                        help="sigmoid, ReLU.")
    parser.add_argument(
        "--mask-bias",
        dest="mask_bias",
        action="store_const",
        const=True,
        default=False,
        help="Whether to add bias. Default to True.",
    )
    parser.add_argument("--explain-node",
                        dest="explain_node",
                        type=int,
                        help="Node to explain.")
    parser.add_argument("--graph-idx",
                        dest="graph_idx",
                        type=int,
                        help="Graph to explain.")
    parser.add_argument(
        "--graph-mode",
        dest="graph_mode",
        action="store_const",
        const=True,
        default=False,
        help="whether to run Explainer on Graph Classification task.",
    )
    parser.add_argument(
        "--multigraph-class",
        dest="multigraph_class",
        type=int,
        help=
        "whether to run Explainer on multiple Graphs from the Classification task for examples in the same class.",
    )
    parser.add_argument(
        "--multinode-class",
        dest="multinode_class",
        type=int,
        help=
        "whether to run Explainer on multiple nodes from the Classification task for examples in the same class.",
    )
    parser.add_argument(
        "--align-steps",
        dest="align_steps",
        type=int,
        help="Number of iterations to find P, the alignment matrix.",
    )

    parser.add_argument("--method",
                        dest="method",
                        type=str,
                        help="Method. Possible values: base, att.")
    parser.add_argument("--name-suffix",
                        dest="name_suffix",
                        help="suffix added to the output filename")
    parser.add_argument(
        "--explainer-suffix",
        dest="explainer_suffix",
        help="suffix added to the explainer log",
    )
    parser.add_argument(
        "--hops",
        dest="hops",
        type=int,
        help="k-hop subgraph considered for GraphSHAP",
    )
    parser.add_argument(
        "--num_samples",
        dest="num_samples",
        type=int,
        help="number of samples used to train GraphSHAP",
    )
    parser.add_argument(
        "--multiclass",
        type=bool,
        help='False if we consider explanations for the predicted class only')
    parser.add_argument(
        "--hv",
        type=str,
        help="way simplified input is translated to the original input space")
    parser.add_argument("--feat",
                        type=str,
                        help="node features considered for hv above")
    parser.add_argument("--coal", type=str, help="type of coalition sampler")
    parser.add_argument("--g",
                        type=str,
                        help="method used to train g on derived dataset")
    parser.add_argument(
        "--regu",
        type=int,
        help='None if we do not apply regularisation, 1 if only feat')
    parser.add_argument("--info",
                        type=bool,
                        help='True if we want to see info about the explainer')
    parser.add_argument(
        "--fullempty",
        type=str,
        default=None,
        help='True if want to discard full and empty coalitions')
    parser.add_argument(
        "--S",
        type=int,
        default=3,
        help=
        'Max size of coalitions sampled in priority and treated specifically')

    # TODO: Check argument usage
    parser.set_defaults(
        logdir="log",
        ckptdir="ckpt",
        dataset="syn1",
        #bmname='Mutagenicity',
        graph_mode=False,
        opt="adam",
        opt_scheduler="none",
        gpu=False,
        cuda="0",
        lr=0.1,
        clip=2.0,
        batch_size=20,
        num_epochs=150,
        hidden_dim=20,
        output_dim=20,
        num_gc_layers=3,
        dropout=0.0,
        method="base",
        name_suffix="",
        explainer_suffix="",
        align_steps=100,
        explain_node=None,
        graph_idx=-1,
        mask_act="sigmoid",
        multigraph_class=-1,
        multinode_class=-1,
        hops=2,
        num_samples=65,
        multiclass=False,
        fullempty=None,
        S=1,
        hv='compute_pred',
        feat='Expectation',
        coal='SmarterSeparate',
        g='WLR_sklearn',
        regu=None,
        info=True,
    )
    return parser.parse_args()
예제 #3
0
def arg_parse():
    print("Attempt to parse arguments...")
    parser = argparse.ArgumentParser(description='GNN program arguments.')

    # Set optimizer parameters
    parser_utils.parse_optimizer(parser)

    ## Add parsing arguments
    parser.add_argument('--datadir',
                        dest='datadir',
                        help='Directory where benchmark is located')
    parser.add_argument('--logdir',
                        dest='logdir',
                        help='Tensorboard log directory')
    parser.add_argument('--ckptdir',
                        dest='ckptdir',
                        help='Model checkpoint directory')

    # dataset is set by defaults below
    # opt and opt_scheduler defined in parse_optimizer
    parser.add_argument(
        '--max_nodes',
        dest='max_nodes',
        type=int,
        help=
        'Maximum number of nodes (ignore graphs with nodes exceeding the number.'
    )
    parser.add_argument('--cuda', dest='cuda', help='CUDA.')
    parser.add_argument('--feature',
                        dest='feature_type',
                        help='Feature used for encoder. Can be : id, deg')

    # lr and clip defined in parse_optimizer
    parser.add_argument('--batch_size',
                        dest='batch_size',
                        type=int,
                        help='Batch size.')
    parser.add_argument('--epochs',
                        dest='num_epochs',
                        type=int,
                        help='Number of epochs to train.')
    parser.add_argument(
        '--train_ratio',
        dest='train_ratio',
        type=float,
        help='Ratio of number of graphs training set to all graphs.')

    # test_ratio is set by defaults below
    parser.add_argument('--num_workers',
                        dest='num_workers',
                        type=int,
                        help='Number of workers to load data.')
    parser.add_argument('--input_dim',
                        dest='input_dim',
                        type=int,
                        help='Input feature dimension')

    # Cannot use "parse_prog.py --h" causes "error: ambiguous" (Usage: parse_prog.py --hidden_dim=30)
    parser.add_argument('--hidden_dim',
                        dest='hidden_dim',
                        type=int,
                        help='Hidden dimension')
    parser.add_argument('--output_dim',
                        dest='output_dim',
                        type=int,
                        help='Output dimension')

    parser.add_argument('--num_classes',
                        dest='num_classes',
                        type=int,
                        help='Number of label classes')
    parser.add_argument(
        '--num_gc_layers',
        dest='num_gc_layers',
        type=int,
        help='Number of graph convolution layers before each pooling')
    parser.add_argument('--dropout',
                        dest='dropout',
                        type=float,
                        help='Dropout rate.')
    parser.add_argument('--weight_decay',
                        dest='weight_decay',
                        type=float,
                        help='Weight decay regularization constant.')
    parser.add_argument('--method',
                        dest='method',
                        help='Method. Possible values: base, ')
    parser.add_argument('--name-suffix',
                        dest='name_suffix',
                        help='suffix added to the output filename')

    # assign_ratio is set by defaults below
    parser.add_argument('--nobias',
                        dest='bias',
                        action='store_const',
                        const=False,
                        default=True,
                        help='Whether to add bias. Default to True.')
    parser.add_argument('--gpu',
                        dest='gpu',
                        action='store_const',
                        const=True,
                        default=False,
                        help='Whether to use GPU.')
    parser.add_argument('--linkpred',
                        dest='linkpred',
                        action='store_const',
                        const=True,
                        default=False,
                        help='Whether link prediction side objective is used')
    parser.add_argument('--bn',
                        dest='bn',
                        action='store_const',
                        const=True,
                        default=False,
                        help='Whether batch normalization is used')

    # bmname is set by defaults below

    # Set defaults for all program parameters unless provided by user
    parser.set_defaults(
        datadir="data",  # Directory where benchmark is stored (io_parser)
        logdir="log",  # Tensorboard log directory
        ckptdir="ckpt",  # Model checkpoint directory
        dataset="BAGraph",  # Synthetic dataset, syn1
        opt="adam",  # Opt parser
        opt_scheduler="none",  # Optimizer scheduler
        max_nodes=100,  # Maximum number of nodes
        # (ignore graphs with nodes exceeding the number)
        cuda="0",  # CUDA value
        feature_type=
        "default",  # Feature used for encoder with possible values : id, deg
        lr=0.001,  # Learning rate
        clip=2.0,  # Gradient clipping
        batch_size=20,  # Batch size
        num_epochs=1000,  # Number of epochs to train data
        train_ratio=0.8,  # Ratio of number of training set to all graphs
        test_ratio=0.1,
        num_workers=1,  # Number of workers to load data
        input_dim=10,  # Input feature dimension
        hidden_dim=20,  # Hidden layer dimension
        output_dim=20,  # Output layer dimension
        num_classes=2,  # Number of label classes
        num_gc_layers=
        3,  # Number of graph convolution layers before each pooling
        dropout=0.0,  # Dropout rate
        weight_decay=0.005,  # Weight decay regularization constant
        method="base",  # Method used with possible values : base
        name_suffix="",  # Suffix added to the output filename
        assign_ratio=0.1,  # Ratio of number of nodes in consecutive layers
        bias=True,  # "Whether to add bias
        gpu=False,  # Whether to use GPU
        linkpred=False,  # Whether link prediction side objective is used
        bn=False,  # Whether batch normalization is used
        bmname=None)  # Name of the benchmark datase

    return parser.parse_args()
예제 #4
0
def arg_parse():
    parser = argparse.ArgumentParser(description="GNN Explainer arguments.")
    io_parser = parser.add_mutually_exclusive_group(required=False)
    io_parser.add_argument("--dataset", dest="dataset", help="Input dataset.")
    benchmark_parser = io_parser.add_argument_group()
    benchmark_parser.add_argument("--bmname",
                                  dest="bmname",
                                  help="Name of the benchmark dataset")
    io_parser.add_argument("--pkl",
                           dest="pkl_fname",
                           help="Name of the pkl data file")

    parser_utils.parse_optimizer(parser)

    parser.add_argument(
        "--clean-log",
        action="store_true",
        help="If true, cleans the specified log directory before running.")
    parser.add_argument("--logdir",
                        dest="logdir",
                        help="Tensorboard log directory")
    parser.add_argument("--ckptdir",
                        dest="ckptdir",
                        help="Model checkpoint directory")
    parser.add_argument("--cuda", dest="cuda", help="CUDA.")
    parser.add_argument(
        "--gpu",
        dest="gpu",
        action="store_const",
        const=True,
        default=False,
        help="whether to use GPU.",
    )
    parser.add_argument("--epochs",
                        dest="num_epochs",
                        type=int,
                        help="Number of epochs to train.")
    parser.add_argument("--hidden-dim",
                        dest="hidden_dim",
                        type=int,
                        help="Hidden dimension")
    parser.add_argument("--output-dim",
                        dest="output_dim",
                        type=int,
                        help="Output dimension")
    parser.add_argument(
        "--num-gc-layers",
        dest="num_gc_layers",
        type=int,
        help="Number of graph convolution layers before each pooling",
    )
    parser.add_argument(
        "--bn",
        dest="bn",
        action="store_const",
        const=True,
        default=False,
        help="Whether batch normalization is used",
    )
    parser.add_argument("--dropout",
                        dest="dropout",
                        type=float,
                        help="Dropout rate.")
    parser.add_argument(
        "--nobias",
        dest="bias",
        action="store_const",
        const=False,
        default=True,
        help="Whether to add bias. Default to True.",
    )
    parser.add_argument(
        "--no-writer",
        dest="writer",
        action="store_const",
        const=False,
        default=True,
        help="Whether to add bias. Default to True.",
    )
    # Explainer
    parser.add_argument("--mask-act",
                        dest="mask_act",
                        type=str,
                        help="sigmoid, ReLU.")
    parser.add_argument(
        "--mask-bias",
        dest="mask_bias",
        action="store_const",
        const=True,
        default=False,
        help="Whether to add bias. Default to True.",
    )
    parser.add_argument("--explain-node",
                        dest="explain_node",
                        type=int,
                        help="Node to explain.")
    parser.add_argument("--graph-idx",
                        dest="graph_idx",
                        type=int,
                        help="Graph to explain.")
    parser.add_argument(
        "--graph-mode",
        dest="graph_mode",
        action="store_const",
        const=True,
        default=False,
        help="whether to run Explainer on Graph Classification task.",
    )
    parser.add_argument(
        "--multigraph-class",
        dest="multigraph_class",
        type=int,
        help=
        "whether to run Explainer on multiple Graphs from the Classification task for examples in the same class.",
    )
    parser.add_argument(
        "--multinode-class",
        dest="multinode_class",
        type=int,
        help=
        "whether to run Explainer on multiple nodes from the Classification task for examples in the same class.",
    )
    parser.add_argument(
        "--align-steps",
        dest="align_steps",
        type=int,
        help="Number of iterations to find P, the alignment matrix.",
    )

    parser.add_argument("--method",
                        dest="method",
                        type=str,
                        help="Method. Possible values: base, att.")
    parser.add_argument("--name-suffix",
                        dest="name_suffix",
                        help="suffix added to the output filename")
    parser.add_argument(
        "--explainer-suffix",
        dest="explainer_suffix",
        help="suffix added to the explainer log",
    )

    # TODO: Check argument usage
    parser.set_defaults(
        logdir="log",
        ckptdir="ckpt",
        dataset="sat1",
        opt="adam",
        opt_scheduler="none",
        cuda="0",
        lr=0.1,
        clip=2.0,
        batch_size=20,
        num_epochs=100,
        hidden_dim=20,
        output_dim=20,
        num_gc_layers=3,
        dropout=0.0,
        method="base",
        name_suffix="",
        explainer_suffix="",
        align_steps=1000,
        explain_node=None,
        graph_idx=-1,
        mask_act="sigmoid",
        multigraph_class=-1,
        multinode_class=-1,
    )
    return parser.parse_args()
예제 #5
0
def arg_parse():
    parser = argparse.ArgumentParser(description='GraphPool arguments.')
    io_parser = parser.add_mutually_exclusive_group(required=False)
    io_parser.add_argument('--dataset', dest='dataset', help='Input dataset.')
    benchmark_parser = io_parser.add_argument_group()
    benchmark_parser.add_argument('--bmname',
                                  dest='bmname',
                                  help='Name of the benchmark dataset')
    io_parser.add_argument('--pkl',
                           dest='pkl_fname',
                           help='Name of the pkl data file')

    softpool_parser = parser.add_argument_group()
    softpool_parser.add_argument(
        '--assign-ratio',
        dest='assign_ratio',
        type=float,
        help='ratio of number of nodes in consecutive layers')
    softpool_parser.add_argument('--num-pool',
                                 dest='num_pool',
                                 type=int,
                                 help='number of pooling layers')
    parser.add_argument('--linkpred',
                        dest='linkpred',
                        action='store_const',
                        const=True,
                        default=False,
                        help='Whether link prediction side objective is used')

    parser_utils.parse_optimizer(parser)

    parser.add_argument('--datadir',
                        dest='datadir',
                        help='Directory where benchmark is located')
    parser.add_argument('--logdir',
                        dest='logdir',
                        help='Tensorboard log directory')
    parser.add_argument('--ckptdir',
                        dest='ckptdir',
                        help='Model checkpoint directory')
    parser.add_argument('--cuda', dest='cuda', help='CUDA.')
    parser.add_argument('--gpu',
                        dest='gpu',
                        action='store_const',
                        const=True,
                        default=False,
                        help='whether to use GPU.')
    parser.add_argument(
        '--max_nodes',
        dest='max_nodes',
        type=int,
        help=
        'Maximum number of nodes (ignore graghs with nodes exceeding the number.'
    )
    parser.add_argument('--batch_size',
                        dest='batch_size',
                        type=int,
                        help='Batch size.')
    parser.add_argument('--epochs',
                        dest='num_epochs',
                        type=int,
                        help='Number of epochs to train.')
    parser.add_argument(
        '--train_ratio',
        dest='train_ratio',
        type=float,
        help='Ratio of number of graphs training set to all graphs.')
    parser.add_argument('--num_workers',
                        dest='num_workers',
                        type=int,
                        help='Number of workers to load data.')
    parser.add_argument('--feature',
                        dest='feature_type',
                        help='Feature used for encoder. Can be: id, deg')
    parser.add_argument('--input_dim',
                        dest='input_dim',
                        type=int,
                        help='Input feature dimension')
    parser.add_argument('--hidden_dim',
                        dest='hidden_dim',
                        type=int,
                        help='Hidden dimension')
    parser.add_argument('--output_dim',
                        dest='output_dim',
                        type=int,
                        help='Output dimension')
    parser.add_argument('--num_classes',
                        dest='num_classes',
                        type=int,
                        help='Number of label classes')
    parser.add_argument(
        '--num_gc_layers',
        dest='num_gc_layers',
        type=int,
        help='Number of graph convolution layers before each pooling')
    parser.add_argument('--bn',
                        dest='bn',
                        action='store_const',
                        const=True,
                        default=False,
                        help='Whether batch normalization is used')
    parser.add_argument('--dropout',
                        dest='dropout',
                        type=float,
                        help='Dropout rate.')
    parser.add_argument('--nobias',
                        dest='bias',
                        action='store_const',
                        const=False,
                        default=True,
                        help='Whether to add bias. Default to True.')
    parser.add_argument('--weight_decay',
                        dest='weight_decay',
                        type=float,
                        help='Weight decay regularization constant.')

    parser.add_argument('--method',
                        dest='method',
                        help='Method. Possible values: base, ')
    parser.add_argument('--name-suffix',
                        dest='name_suffix',
                        help='suffix added to the output filename')

    parser.set_defaults(
        datadir='data',  # io_parser
        logdir='log',
        ckptdir='ckpt',
        dataset='syn1',
        opt='adam',  # opt_parser
        opt_scheduler='none',
        max_nodes=100,
        cuda='1',
        feature_type='default',
        lr=0.0005,
        clip=2.0,
        batch_size=20,
        num_epochs=1000,
        train_ratio=0.8,
        test_ratio=0.1,
        num_workers=1,
        input_dim=342,
        hidden_dim=20,
        output_dim=20,
        num_classes=4,
        num_gc_layers=10,
        dropout=0.0,
        weight_decay=0.005,
        method='base',
        name_suffix='',
        assign_ratio=0.1,
    )
    return parser.parse_args()
예제 #6
0
def arg_parse():
    print("Attempt to parse arguments for GNN Explainer ...")
    parser = argparse.ArgumentParser(description='GNN program arguments.')
    
    # Set optimizer parameters
    parser_utils.parse_optimizer(parser)

    ## Add parsing arguments
    parser.add_argument('--logdir', dest='logdir',
                        help='Tensorboard log directory')
    parser.add_argument('--ckptdir', dest='ckptdir',
                        help='Model checkpoint directory')

    # dataset is set by defaults below
    # opt and opt_scheduler defined in parse_optimizer
    parser.add_argument("--cuda", dest="cuda", help="CUDA.")
    # lr and clip defined in parse_optimizer

    parser.add_argument('--batch_size', dest='batch_size', type=int,
                        help='Batch size.')
    parser.add_argument('--epochs', dest='num_epochs', type=int,
                        help='Number of epochs to train.')

    # Cannot use "parse_prog.py --h" causes "error: ambiguous" (Usage: parse_prog.py --hidden_dim=30)
    parser.add_argument('--hidden_dim', dest='hidden_dim', type=int,
                        help='Hidden dimension')
    parser.add_argument('--output_dim', dest='output_dim', type=int,
                        help='Output dimension')
    parser.add_argument('--num_classes', dest='num_classes', type=int,
                        help='Number of label classes')
    parser.add_argument('--num_gc_layers', dest='num_gc_layers', type=int,
                        help='Number of graph convolution layers before each pooling')

    parser.add_argument('--dropout', dest='dropout', type=float,
                        help='Dropout rate.')
    parser.add_argument('--method', dest='method',
                        help='Method. Possible values: base, att.')
    parser.add_argument('--name-suffix', dest='name_suffix',
                        help='suffix added to the output filename')

    parser.add_argument('--nobias', dest='bias', action='store_const',
                        const=False, default=True,
                        help='Whether to add bias. Default to True.')
    parser.add_argument('--gpu', dest='gpu', action='store_const',
                        const=True, default=False, help='Whether to use GPU.')
    parser.add_argument('--bn', dest='bn', action='store_const',
                        const=True, default=False,
                        help='Whether batch normalization is used')

    # bmname is set by defaults below

    parser.add_argument("--no-writer", dest="writer", action="store_const",
                        const=False, default=True,
                        help="Whether to add bias. Default to True.")

    # Parameters for Explainer
    parser.add_argument("--mask-act", dest="mask_act", type=str, 
                        help="sigmoid, ReLU.")
    parser.add_argument("--mask-bias", dest="mask_bias", action="store_const",
                        const=True, default=False,
                        help="Whether to add bias. Default to True.")
    parser.add_argument("--explain-node", dest="explain_node", type=int,
                        help="Node to explain.")
    parser.add_argument("--graph-idx", dest="graph_idx", type=int,
                        help="Graph to explain.")
    parser.add_argument("--graph-mode", dest="graph_mode", action="store_const",
                        const=True, default=False,
                        help="Whether to run Explainer on Graph Classification task.")
    parser.add_argument("--multigraph-class", dest="multigraph_class", type=int,
                        help="Whether to run Explainer on multiple Graphs from the Classification task for examples in the same class.")
    parser.add_argument("--multinode-class", dest="multinode_class", type=int,
                        help="whether to run Explainer on multiple nodes from the Classification task for examples in the same class.")

    parser.add_argument("--explainer-suffix", dest="explainer_suffix",
                        help="suffix added to the explainer log")

    # Set defaults for all program parameters unless provided by user
    parser.set_defaults(logdir = "log",          # Tensorboard log directory
                        ckptdir = "ckpt",        # Model checkpoint directory
                        dataset = "BAGraph",     # Synthetic dataset, syn1
                        opt = "adam",            # Opt parser
                        opt_scheduler = "none",  # Optimizer scheduler
                        cuda = "0",              # CUDA value
                        lr = 0.1,                # Learning rate (train : 0.001)
                        clip = 2.0,              # Gradient clipping

                        batch_size = 20,         # Batch size
                        num_epochs = 100,        # Number of epochs for explainer training (train : 1000)
                        hidden_dim = 20,         # Hidden layer dimension
                        output_dim = 20,         # Output layer dimension
                        num_classes = 2,         # Number of label classes
                        num_gc_layers = 3,       # Number of graph convolution layers before each pooling

                        dropout = 0.0,           # Dropout rate
                        method = "base",         # Method used with possible values : base
                        name_suffix = "",        # Suffix added to the output filename

                        bias = True,             # "Whether to add bias
                        gpu = False,             # Whether to use GPU
                        bn = False,              # Whether batch normalization is used
                        bmname = None,           # Name of the benchmark datase

                        explainer_suffix="",     # Suffix added to the explainer log
                        explain_node = 25,       # Node to explain (eg. Check is on None)
                        graph_idx = -1,          # Graph to explain
                        mask_act="sigmoid",      # Type of activation for mask (sigmoid, ReLU)
                        multigraph_class = -1,   # Whether to run Explainer on multiple Graphs from the Classification task for examples in the same class
                        multinode_class=-1)      # Whether to run Explainer on multiple nodes from the Classification task for examples in the same class

    return parser.parse_args()