valid_data = H5PYDataset(DATASET_PATH, which_sets=('valid', ), sources=('s_transition_obs', 'r_transition_obs', 'obs', 'actions')) stream_valid = DataStream(valid_data, iteration_scheme=SequentialScheme( valid_data.num_examples, batch_size)) net = LstmSimpleNet2Pusher(27, 6) print(net) if CUDA: net.cuda() viz = VisdomExt([["loss", "validation loss"], ["diff"]], [ dict(title='LSTM loss', xlabel='iteration', ylabel='loss'), dict(title='Diff loss', xlabel='iteration', ylabel='error') ]) means = { 'o': np.array([ 2.2281456, 1.93128324, 1.63007331, 0.48472479, 0.4500702, 0.30325469, -0.38825685, -0.63075501, 0.63863981, -0.63173348, 1.01628101, -1.02707994 ], dtype='float32'), 's': np.array([ 2.25090551, 1.94997263, 1.6495719, 0.43379614, 0.3314755, 0.43763939, -0.38825685, -0.63075501, 0.63863981, -0.63173348, 1.01628101, -1.02707994
net = torch.nn.Sequential( torch.nn.Linear(15, HIDDEN_NODES), nn.LeakyReLU(0.2), torch.nn.Linear(HIDDEN_NODES, HIDDEN_NODES), nn.LeakyReLU(0.2), torch.nn.Linear(HIDDEN_NODES, HIDDEN_NODES/2), nn.LeakyReLU(0.2), torch.nn.Linear(HIDDEN_NODES/2, 6), ) print(net) if CUDA: net.cuda() viz = VisdomExt([["loss", "validation loss"],["diff"]],[dict(title='LSTM loss', xlabel='iteration', ylabel='loss'), dict(title='Diff loss', xlabel='iteration', ylabel='error')]) def makeIntoVariables(dat): input_ = np.concatenate([dat["obs"][:,:,:6], dat["actions"], dat["s_transition_obs"][:,:,:6]], axis=2) x, y = autograd.Variable( # Don't predict palet and goal position torch.from_numpy(input_).cuda(), requires_grad=False ), autograd.Variable( torch.from_numpy(dat["r_transition_obs"][:,:,:6]).cuda(), requires_grad=False ) return x, y