def plot_encoded_gestures(): dataset = OpportunityDatasetEncoded() templates, labels = dataset.load_isolated_dataset() templates = [templates[t] for t in np.where(labels > 0)[0]] labels = labels[np.where(labels > 0)[0]] plot_creator.plot_gestures(templates, labels) plt.show()
def plot_isolate_gestures(plot=True, save=False): dataset = HCIGuided() if plot: templates, labels = dataset.load_isolated_dataset() labels = np.array(labels) templates = [templates[t] for t in np.where(labels > 0)[0]] labels = labels[np.where(labels > 0)[0]] plot_creator.plot_gestures(templates, labels) plt.show()
def plot_isolate_gestures(sensor_no=67, annotation_column=249): dataset = OpportunityDataset() data = dataset.load_data() stream_labels = data[:, annotation_column] tmp_data = data[:, sensor_no] templates, labels = Dataset.segment_data(tmp_data, stream_labels) labels = np.array(labels) templates = [templates[t] for t in np.where(labels > 0)[0]] labels = labels[np.where(labels > 0)[0]] plot_creator.plot_gestures(templates, labels) plt.show()
def plot_isolate_gestures(): dataset = WetlabDataset() data = dataset.load_data() timestamps = data[:, 0] stream_labels = data[:, -1] tmp_data = np.sqrt(data[:, 1]**2 + data[:, 2]**2 + data[:, 3]**2) # tmp_data = data[:, 2] templates, labels = Dataset.segment_data(tmp_data, stream_labels) labels = np.array(labels) templates = [templates[t] for t in np.where(labels > 0)[0]] labels = labels[np.where(labels > 0)[0]] plot_creator.plot_gestures(templates, labels) # subplt_1.plot(timestamps, data[:, sensor_no], linewidth=0.5) # subplt_2.plot(timestamps, data[:, 249], '.') plt.show()
import matplotlib.pyplot as plt from data_processing import data_loader as dl from utils.plots import plot_creator as plt_creator if __name__ == '__main__': plot_choice = 41 input_file = "/home/mathias/Documents/Academic/PhD/Research/WLCSSTraining/training/cuda/beachvolleyball_encoded/variable_templates/zeus_templates_2021-01-20_16-37-08" dataset_choice = 'beachvolleyball_encoded' classes = [1001, 1002, 1003, 1004] if plot_choice == 0: templates, streams, streams_labels = dl.load_training_dataset( dataset_choice, classes=classes, use_quick_loader=True) plt_creator.plot_gestures(streams, streams_labels, classes=classes) elif plot_choice == 1: data = dl.load_continuous_dataset(dataset_choice) plt_creator.plot_continuous_data(data, classes=classes) elif plot_choice == 2: input_files = [ "/home/mathias/Documents/Academic/PhD/Research/WLCSSTraining/training/cuda/hci_guided/params/zeus_param_thres_2020-08-10_15-14-30" ] plt_creator.plot_gascores(input_files) elif plot_choice == 21: # input_files = [ # '/home/mathias/Documents/Academic/PhD/Research/WLCSSTraining/training/cuda/hci_guided/params/poseidon_param_thres_2020-08-19_14-51-38', # '/home/mathias/Documents/Academic/PhD/Research/WLCSSTraining/training/cuda/hci_guided/params/poseidon_param_thres_2020-08-19_14-57-07', # '/home/mathias/Documents/Academic/PhD/Research/WLCSSTraining/training/cuda/hci_guided/params/poseidon_param_thres_2020-08-19_15-02-46', # '/home/mathias/Documents/Academic/PhD/Research/WLCSSTraining/training/cuda/hci_guided/params/poseidon_param_thres_2020-08-19_15-12-43', # '/home/mathias/Documents/Academic/PhD/Research/WLCSSTraining/training/cuda/hci_guided/params/poseidon_param_thres_2020-08-19_15-19-31'] input_files = [ "/home/mathias/Documents/Academic/PhD/Research/WLCSSTraining/training/cuda/opportunity_encoded/params_perclass/poseidon_param_thres_2020-12-08_18-57-59",
def plot_isolate_gestures(): dataset = SkodaMini() templates, labels = dataset.load_isolated_from_mat() plot_creator.plot_gestures(templates, labels) plt.show()
def plot_isolated_gestures(): dataset = BeachVolleyball() templates, labels = dataset.load_isolated_dataset() plot_creator.plot_gestures(templates, labels) plt.show()
def plot_isolated_gestures_quick_loader(): dataset = HCITable() templates, streams, labels = dataset.quick_load_training_dataset() plot_creator.plot_gestures(streams, labels) plt.show()
def plot_isolate_gestures(plot=True, save=False): dataset = HCITable() streams, labels = dataset.load_isolated_dataset() plot_creator.plot_gestures(streams, labels) plt.show()
def plot_isolated_gestures(plot_null=False): dataset = UWaveGestureLibraryX() templates, labels = dataset.load_isolated_dataset() plot_creator.plot_gestures(templates, labels) plt.show()
def plot_isolated_gestures(): dataset = SHLPreview() streams, labels = dataset.load_isolated_dataset() plot_creator.plot_gestures(streams, labels) plt.show()
def plot_isolate_gestures(): dataset = UTDMhad() templates, labels = dataset.load_isolated_dataset() plot_creator.plot_gestures(templates, labels) plt.show()