예제 #1
0
def testSamplePainting():
    """
    测试模式
    画出单个k线样本
    """
    from utils.painter import paintChart, paintCandlestick
    from utils.postgre_db import initEngine
    from utils.postgre_db import Pattern

    engine = initEngine()

    pattern = "triangles_ascending_up"
    n = 6
    code = "300085.SZ"
    print("开始处理 {} 次波动 {} 形态".format(pattern, n))
    df = pd.read_sql_query(sql="select * from pattern "
                               "where ts_code=\'{}\' and pattern_name=\'{}\' and n_fluctuation=\'{}\' "
                           .format(code, pattern, n), con=engine)
    sample = df.loc[0, :]
    print(sample.id)
    bar_df = pd.read_sql_query(sql="select open, high, low, close from stock_day_bar "
                                   "where ts_code=\'{}\' and i>={} and i<={}"
                               .format(sample.ts_code, sample.i_start, sample.i_end), con=engine)
    open_series = bar_df.open.values
    high_series = bar_df.high.values
    low_series = bar_df.low.values
    close_series = bar_df.close.values
    n = len()
    bar_series = [[]]
    print(len(bar_series))
    paintCandlestick(bar_series, sample)
예제 #2
0
def selectOnePurePattern(pattern_name, n_fluctuation):
    """
    去重模式
    去除pattern表中重复的样本
    """
    from utils.postgre_db import initEngine, DBSession
    from utils.postgre_db import PurePattern
    engine = initEngine()
    print("开始处理 {} 形态 {} 次波动".format(pattern_name, n_fluctuation))
    df = pd.read_sql_query(
        sql="select * from pattern "
        "where pattern_name=\'{}\' and n_fluctuation=\'{}\' ".format(
            pattern_name, n_fluctuation),
        con=engine)
    print("原样本数量 {}".format(len(df)))
    ts_codes = set(df.ts_code.values)
    for ts_code in ts_codes:
        windows = []
        pattern_df = df[df.ts_code == ts_code]
        n = len(pattern_df)
        i_start_arr = pattern_df.i_start.values.tolist()
        i_end_arr = pattern_df.i_end.values.tolist()
        start_date_arr = pattern_df.start_date.values.tolist()
        end_date_arr = pattern_df.end_date.values.tolist()
        pip_arr_arr = pattern_df.pip_arr.values.tolist()
        pip_p_arr_arr = pattern_df.pip_p_arr.values.tolist()
        print("开始处理{}的{}个样本".format(ts_code, n))
        count = 0
        not_duplicate = True
        for i in range(n):
            i_start = i_start_arr[i]
            i_end = i_end_arr[i]
            for window in windows:
                if (i_end - window[0]) * (i_start - window[1]) < 0:
                    not_duplicate = False
                    break
            if not_duplicate:
                count += 1
                windows.append((i_start, i_end))
                pure_pattern_obj = [{
                    "ts_code": ts_code,
                    "start_date": start_date_arr[i],
                    "end_date": end_date_arr[i],
                    "i_start": i_start,
                    "i_end": i_end,
                    "pip_arr": pip_arr_arr[i],
                    "pip_p_arr": pip_p_arr_arr[i],
                    "pattern_name": pattern_name,
                    "n_fluctuation": n_fluctuation
                }]
                # print("出现{}".format(pure_pattern_obj))
                DBSession.bulk_insert_mappings(PurePattern, pure_pattern_obj)
                DBSession.commit()
        print("去重后剩余{}个样本".format(count))
    return
예제 #3
0
def doBackTest():
    """
    回测实验主函数
    """
    from back_testing.back_test import doOneBackTest
    from utils.postgre_db import initEngine
    from utils.postgre_db import MinSample
    engine = initEngine()
    recreateTable(table_name="back_test")
    standard_levels = [1, 2, 3, 4, 5]
    doOneBackTest(pattern_names[0], n_fluctuations[0], standard_levels[0],
                  engine)
예제 #4
0
def scanDb(table):
    """
    扫描模式
    扫描数据库特定表特定字段
    """
    from utils.postgre_db import initEngine, DBSession, getStockDayBars, getStockBuckets
    from utils.postgre_db import Pattern
    engine = initEngine()
    print("当前数据表 {}".format(engine.table_names()))
    if table == "stock_day_bar":
        code = "600318.SH"
        df = pd.read_sql_query(
            sql="select * from stock_day_bar where ts_code=\'{}\'".format(
                code),
            con=engine)
        print(df.shape)
    elif table == "pattern":
        pattern = "triangles_ascending_up"
        n = 6
        df = pd.read_sql_query(
            sql="select * from pattern "
            "where pattern_name=\'{}\' and n_fluctuation=\'{}\' ".format(
                pattern, n),
            con=engine)
        print(df)
        print(df.shape)
        print("已扫描股票数量 {}".format(len(set(df.ts_code.values))))
    elif table == "min_sample":
        for pattern_name in pattern_names:
            df = pd.read_sql_query(
                sql="select * from min_sample "
                "where pattern_name=\'{}\'".format(pattern_name),
                con=engine)
            print("{} 的样本数量 {}".format(pattern_name, df.shape))
    elif table == "back_test":
        df = pd.read_sql_query(sql="select * from back_test", con=engine)
        # "where pattern_name=\'{}\'".format(pattern), con=engine)
        print(df)
        print(df.shape)
    elif table == "pure_pattern":
        for pattern_name in pattern_names:
            for n_fluctuation in n_fluctuations:
                df = pd.read_sql_query(
                    sql="select * from pure_pattern "
                    "where pattern_name=\'{}\' and n_fluctuation=\'{}\' ".
                    format(pattern_name, n_fluctuation),
                    con=engine)
                print("{} 形态 {} 次波动的样本数量 {}".format(pattern_name,
                                                    n_fluctuation, df.shape))
예제 #5
0
def recreateDb():
    """
    重建数据库(慎用)
    1.删除原有数据表
    2.重建数据表
    3.更新k线原始数据
    """
    from utils.postgre_db import initEngine, DBSession, initStockBuckets
    from utils.postgre_db import Pattern
    from utils.io_processor import saveAllStockSeriesToPostGre
    engine = initEngine(recreate_all=True)
    print("当前数据表 {}".format(engine.table_names()))
    saveAllStockSeriesToPostGre(engine)
    initStockBuckets(engine)
    print("完成数据库重建")
예제 #6
0
def recreateTable(table_name):
    """
    重建数据表(慎用)
    """
    from utils.postgre_db import initEngine
    from utils.postgre_db import Pattern, PurePattern, MinSample, BackTest
    engine = initEngine()
    if table_name == "pattern":
        Pattern.__table__.drop(engine)
        Pattern.__table__.create(engine)
    elif table_name == "pure_pattern":
        PurePattern.__table__.drop(engine)
        PurePattern.__table__.create(engine)
    elif table_name == "min_sample":
        MinSample.__table__.drop(engine)
        MinSample.__table__.create(engine)
    elif table_name == "back_test":
        BackTest.__table__.drop(engine)
        BackTest.__table__.create(engine)
예제 #7
0
def concentrateOnePattern(pattern_name, n_fluctuation):
    """
    工作模式
    1.求取一阶距离矩阵
    2.求取收缩集索引
    3.求取二阶距离矩阵
    """
    from utils.postgre_db import initEngine, DBSession
    from utils.postgre_db import MinSample
    from pattern_concentration.dist_matrix import DistMatrix
    from pattern_concentration.optimal_set import OptimalSet

    engine = initEngine()
    t2 = time.time()
    # 生成最大集
    print("开始处理 {} 次波动 {} 形态".format(pattern_name, n_fluctuation))
    df = pd.read_sql_query(
        sql="select * from pure_pattern "
        "where pattern_name=\'{}\' and n_fluctuation=\'{}\' ".format(
            pattern_name, n_fluctuation),
        con=engine)
    # df = df.head(100)
    print("最大样本集样本容量 {}".format(len(df)))
    sample_ids = df.id.values
    pip_p_arrs = df.pip_p_arr.values
    n_max = len(sample_ids)
    raw_max_set = {
        sample_ids[i]: np.array(pip_p_arrs[i])
        for i in range(n_max)
    }
    print("生成最大样本集 {}个样本:\n {}".format(n_max, raw_max_set))
    print("耗时 {}".format(time.time() - t2))
    del pip_p_arrs

    # 生成一阶距离矩阵
    matrix_1 = DistMatrix(raw_max_set)
    matrix_1.normalizeSeries()
    del raw_max_set
    lev_1_mat = matrix_1.getEuclideanDistMatrix()
    # print("生成一阶矩阵:\n {}".format(lev_1_mat))
    print("耗时 {}".format(time.time() - t2))

    # 最优缩小集提取
    optimizer_1 = OptimalSet(lev_1_mat, sample_ids, 0.5)
    del lev_1_mat
    optimizer_1.getKernelSet()
    shrink_set = optimizer_1.getOptimalSet()
    shrink_ids = np.array([sample_ids[i] for i in shrink_set])
    print("获得缩小集索引 {}个样本:\n {}".format(len(shrink_ids), shrink_ids))
    print("耗时 {}".format(time.time() - t2))

    # 生成最优缩小集
    raw_shrink_set = {}
    for sample_id in shrink_ids:
        sample_row = df.loc[df["id"] == sample_id]
        ts_code = sample_row["ts_code"].values[0]
        i_start = sample_row["i_start"].values[0]
        i_end = sample_row["i_end"].values[0]
        sample_val_series = pd.read_sql_query(
            sql="select close from stock_day_bar "
            "where ts_code=\'{}\' and i>=\'{}\' and i<=\'{}\' ".format(
                ts_code, i_start, i_end),
            con=engine)["close"].values
        raw_shrink_set[sample_id] = sample_val_series
    print("生成收缩集:\n {}".format(raw_shrink_set))
    print("耗时 {}".format(time.time() - t2))

    # 生成二阶距离矩阵
    matrix_2 = DistMatrix(raw_shrink_set)
    matrix_2.normalizeSeries()
    lev_2_mat = matrix_2.getDtwDistMatrix()
    # print("生成二阶矩阵:\n {}".format(lev_2_mat))
    print("耗时 {}".format(time.time() - t2))

    # 最小集提取
    optimizer_2 = OptimalSet(lev_2_mat, shrink_ids, 0.5)
    optimizer_2.getKernelSet()
    min_set = optimizer_2.getOptimalSet()
    min_ids = np.array([shrink_ids[i] for i in min_set])
    print("获得最小集 {}个样本:\n {}".format(len(min_ids), min_ids))
    min_level_dict = optimizer_2.divideLevels(id_set=min_ids, n_levels=5)
    # print("生成最小集分层:\n {}".format(min_level_dict))
    print("耗时 {}".format(time.time() - t2))

    # 最小集存储
    for i_level, i_level_ids in min_level_dict.items():
        for sample_id in i_level_ids:
            sample_row = df.loc[df["id"] == sample_id]
            ts_code = sample_row["ts_code"].values[0]
            i_end = int(sample_row["i_end"].values[0])
            pattern_id = int(sample_row["id"].values[0])
            sample_obj = [{
                "ts_code": ts_code,
                "i_end": i_end,
                "pattern_name": pattern_name,
                "pattern_id": pattern_id,
                "n_fluctuation": n_fluctuation,
                "standard_level": i_level
            }]
            DBSession.bulk_insert_mappings(MinSample, sample_obj)
            DBSession.commit()
    print("最小样本集筛选并存储完毕!")
    print("耗时 {}".format(time.time() - t2))
예제 #8
0
def searchAllPattern():
    """
    工作模式
    1.跑出所有子窗的pip_arr
    2.对所有pip_arr匹配pattern模式
    3.对所有股票执行上述操作
    只需执行一遍可获得所有数据,存数据库
    """
    from pattern_recognition.pip_arr import PipArrDetector
    from pattern_recognition.pattern import is_pattern, name_dict
    from utils.postgre_db import initEngine, DBSession, getStockDayBars, getStockBuckets
    from utils.postgre_db import Pattern
    engine = initEngine()
    Pattern.__table__.drop(engine)
    Pattern.__table__.create(engine)
    # codes = ["600618.SH"]
    codes = getStockBuckets(engine)

    t1 = time.time()
    counter = {pattern_name: 0 for pattern_name in name_dict}
    for code in codes:
        print("开始处理 {}".format(code))
        t2 = time.time()
        bar_series = getStockDayBars(code, engine)

        p_series = bar_series["close"].values
        date_series = bar_series["trade_date"].values

        d = PipArrDetector(p_series)
        d.findPipMap()
        print("获得pip映射表 {}".format(time.time() - t2))

        pip_arr_series = d.findAllPipArr()
        print("获得pip序列集 {}".format(time.time() - t2))

        for pip_arr in pip_arr_series:
            i_l = pip_arr[0]
            i_r = pip_arr[1]
            for n in range(6, 9):
                pip_link = sorted(pip_arr[:n])
                pip_p_series = [p_series[pip] for pip in pip_link]
                for pattern_name in name_dict:
                    if is_pattern(pattern_name, n, pip_link, pip_p_series):
                        start_date = date_series[i_l]
                        end_date = date_series[i_r]
                        counter[pattern_name] += 1
                        pattern_obj = [{
                            "ts_code": code,
                            "start_date": start_date,
                            "end_date": end_date,
                            "i_start": i_l,
                            "i_end": i_r,
                            "pip_arr": pip_link,
                            "pip_p_arr": pip_p_series,
                            "pattern_name": pattern_name,
                            "n_fluctuation": n
                        }]
                        print("出现{}".format(pattern_obj))
                        DBSession.bulk_insert_mappings(Pattern, pattern_obj)
                        DBSession.commit()
        print("完成模式样本筛选 {}".format(time.time() - t2))
        print("{} 完成,耗时 {}".format(code, time.time() - t2))
        print("总耗时 {}".format(time.time() - t1))
    print(counter)
    print("最大样本集存储完毕!")