def predict_result(): if request.method == 'GET': dir_path = request.args.get('dir_path') dir_name = request.args.get('dir_name') return render_template('prediction_loading.html', dir_name=dir_name, dir_path=dir_path) if request.method == 'POST': arguments = json.loads(request.data.decode("UTF-8")) dir_name, dir_path = arguments.get('dir_name'), arguments.get( 'dir_path') dir_name = dir_name.replace('.zip', '') data = predict(root=dir_path, img_zip=dir_name) output = get_formatted_data( **data, threshold=request.args.get('threshold', 0.5), ) img_dir = os.path.join(dir_path, dir_name) root = os.path.dirname(__file__) # command = f"cp -r {os.path.join(os.path.dirname(root), img_dir)} {os.path.join(root, 'static')}" # os.popen("sudo -S %s" % command, 'w').write('Root2018!\n') image_names = os.listdir(os.path.join(root, 'static', dir_name)) # return render_template('predict_result.html', dir_name=dir_name, image_names=image_names, predictions=output) uid = str(uuid.uuid4()) PREDICTIONS[uid] = dict(dir_name=dir_name, image_names=image_names, predictions=output) return {'done': True, 'uid': uid}
def predict_endpoint(): passenger = request.json passenger_df = pd.DataFrame(passenger, index = [0]) checkedData = ensure_correct_order(passenger_df) checked_df = checkColumns(checkedData) prediction = predict(checked_df, encode_cabin, extract_cabin_number, encode_title, 'models/model.joblib') return("{{ 'prediction': {0} }}".format(prediction))
def prediction(): Config.ENTITY_NAME = 'animal' Config.ITERATION = 0 Config.MODEL_NAME = 'nn_model' image = Image.open('cats_00001.jpg') preds = predict(image, entity_name='nist', model_name='nn_model', model_iteration=0) print(preds) return ""
def classify(): print("Initializing backend...") print("Loading network...") body = request.json print(body) probability = predict(body['data']) print(probability) return jsonify({ 'success': True, 'result': json.dumps(probability.astype(float)) })
def prediction(): Config.ENTITY_NAME = request.get_json()['entityName'] Config.ITERATION = request.get_json()['iteration'] Config.MODEL_NAME = request.get_json()['modelName'] image = request.get_json()['image'] image = base64.b64decode(str(image)) image = Image.open(io.BytesIO(image)) # if model_name == 'KNN': # preds = knn_model.KNN_Model(), predict( # image, entity_name, 'KNN', model_iteration) # elif model_name == 'DNN': if Config.MODEL_NAME == 'DNN': preds = predict(image, entity_name=Config.ENTITY_NAME, model_name=Config.MODEL_NAME, model_iteration=Config.ITERATION) if Config.MODEL_NAME == 'KNN': preds = "Model not Trained yet" # print(preds) return jsonify(preds)
def test_predict(): res = predict('Hallo') assert isinstance(res, str)
def classify(): filename = upload_file(request.files['file']) res = predict(filename) return jsonify({'success': True, 'class': res})
jac=True, method='TNC', options=options) cost = res.fun theta = res.x print('Cost at theta found by optimize.minimize: {:.3f}'.format(cost)) print('Expected cost (approx): 0.203') print('Theta:{:.3f}, {:.3f}, {:.3f}'.format(*theta)) print('Expected theta (approx):-25.161, 0.206, 0.201') # Plot decision boundary plotDecisionBoundary(theta, X_padded, y) # Predict probability for a student with score 45 on exam 1 and score 85 on exam 2 grades = np.array([1, 45, 85]) prob = sigmoid(grades.dot(theta)) print( 'For a student with scores 45 and 85, we predict an admission probability of {:.3f}' .format(prob)) print('Expected value: 0.775 +/- 0.002') # Compute accuracy on our training set p = predict(theta, X_padded) accuracy = np.mean(y == p) * 100 print('Train Accuracy: {}%'.format(accuracy)) print('Expected accuracy (approx): 89.0')
def main(args): progress = WorkSplitter() progress.section("Parameter Setting") print("Data Path: {}".format(args.data_dir)) reviewJsonToronto = args.data_dir + args.data_name progress.section("Load data") df = get_yelp_df(path='', filename=reviewJsonToronto, sampling=True) print('Data loaded sucessfully') progress.section("Matrix Generation") rating_matrix, timestamp_matrix, I_C_matrix, IC_dictionary = get_rating_timestamp_matrix( df) # get ratingWuserAvg_matrix rating_array = rating_matrix.toarray() user_average_array = rating_array.sum(axis=1) / np.count_nonzero( rating_array, axis=1) init_UI = np.zeros(rating_array.shape) init_UI[rating_array.nonzero()] = 1 #Creating rating with user average array array for i in range(user_average_array.shape[0]): init_UI[i] = init_UI[i] * (user_average_array[i] - 0.001) user_average_array = init_UI ratingWuserAvg_array = rating_array - user_average_array ratingWuserAvg_matrix = sparse.csr_matrix(ratingWuserAvg_array) progress.section("Split for training") rtrain_implicit, rvalid_implicit, rtest_implicit, rtrain_userAvg_implicit, rvalid_userAvg_implicit, \ rtest_userAvg_implicit, nonzero_index, rtime, item_idx_matrix_train_implicit,item_idx_matrix_valid_implicit, item_idx_matrix_test_implicit \ = time_ordered_splitModified(rating_matrix=rating_matrix, ratingWuserAvg_matrix=ratingWuserAvg_matrix, timestamp_matrix=timestamp_matrix, ratio=[0.5,0.2,0.3], implicit=True, remove_empty=False, threshold=3,sampling=False, sampling_ratio=0.1, trainSampling=0.95) rtrain, rvalid, rtest, rtrain_userAvg, rvalid_userAvg, rtest_userAvg, nonzero_index, rtime, \ item_idx_matrix_train,item_idx_matrix_valid, item_idx_matrix_test = time_ordered_splitModified(rating_matrix=rating_matrix, ratingWuserAvg_matrix=ratingWuserAvg_matrix, timestamp_matrix=timestamp_matrix, ratio=[0.5,0.2,0.3], implicit=False, remove_empty=False, threshold=3, sampling=False, sampling_ratio=0.1, trainSampling=0.95) rtrain = rtrain + rvalid + rtest rtrain_implicit = rtrain_implicit + rvalid_implicit + rtest_implicit progress.section("Get UC Matrix") #Get UC matrices U_C_matrix_explicit, U_C_matrix_implicit = get_UC_Matrix( I_C_matrix, rtrain_implicit) progress.section("Get IK Similarity") IK_MATRIX = ikGeneration(df) IK_similarity = train(IK_MATRIX) ''' progress.section("Get IC Similarity") IC_similarity = train(I_C_matrix) ''' progress.section("Get IP, IS, ID Dictionary") #intersection = get_intersection() intersection_yonge_and_finch, intersection_bloor_and_bathurst, intersection_spadina_and_dundas,\ intersection_queen_and_spadina, intersection_bloor_and_yonge, intersection_dundas_and_yonge = get_intersection() IP_df, IP_dictionary = get_IP_matrix_dictionary(df, IK_similarity) IS_dictionary = get_IS_dictionary(df) #ID_dictionary = get_ID_dictionary(df,list(set(df['business_num_id'])),intersection) ID_dictionary_yonge_and_finch = get_ID_dictionary( df, list(set(df['business_num_id'])), intersection_yonge_and_finch) ID_dictionary_bloor_and_bathurst = get_ID_dictionary( df, list(set(df['business_num_id'])), intersection_bloor_and_bathurst) ID_dictionary_spadina_and_dundas = get_ID_dictionary( df, list(set(df['business_num_id'])), intersection_spadina_and_dundas) ID_dictionary_queen_and_spadina = get_ID_dictionary( df, list(set(df['business_num_id'])), intersection_queen_and_spadina) ID_dictionary_bloor_and_yonge = get_ID_dictionary( df, list(set(df['business_num_id'])), intersection_bloor_and_yonge) ID_dictionary_dundas_and_yonge = get_ID_dictionary( df, list(set(df['business_num_id'])), intersection_dundas_and_yonge) progress.section("user item predict") user_item_prediction_score = predict(rtrain, 110, IK_similarity, item_similarity_en=True) UI_Prediction_Matrix = prediction(user_item_prediction_score, rtrain) progress.section("Save datafiles csv") save_dataframe_csv(df, args.data_dir, "Dataframe") progress.section("Save datafiles JSON") saveDictToJson(IC_dictionary, args.data_dir, 'icDictionary', trainOrTest='train') saveDictToJson(IP_dictionary, args.data_dir, 'ipDictionary', trainOrTest='train') saveDictToJson(IS_dictionary, args.data_dir, 'isDictionary', trainOrTest='train') #saveDictToJson(ID_dictionary, args.data_dir, 'idDictionary', trainOrTest='train') saveDictToJson(ID_dictionary_yonge_and_finch, args.data_dir, 'idDictionary_yongefinch', trainOrTest='train') saveDictToJson(ID_dictionary_bloor_and_bathurst, args.data_dir, 'idDictionary_bloorbathurst', trainOrTest='train') saveDictToJson(ID_dictionary_spadina_and_dundas, args.data_dir, 'idDictionary_spadinadundas', trainOrTest='train') saveDictToJson(ID_dictionary_queen_and_spadina, args.data_dir, 'idDictionary_queenspadina', trainOrTest='train') saveDictToJson(ID_dictionary_bloor_and_yonge, args.data_dir, 'idDictionary_blooryonge', trainOrTest='train') saveDictToJson(ID_dictionary_dundas_and_yonge, args.data_dir, 'idDictionary_dundasyonge', trainOrTest='train') progress.section("Save datafiles Numpy") save_numpy_csr(rtrain, args.data_dir, "rtrain") save_numpy_csr(I_C_matrix, args.data_dir, "icmatrix") #save_numpy(user_item_prediction_score, args.data_dir, "predictionScore") save_numpy(IK_similarity, args.data_dir, "IKbased_II_similarity") #Tina requested for this name save_numpy(UI_Prediction_Matrix, args.data_dir, "UI_prediction_matrix") '''
from utils.config import * from utils.predict import predict, bert_model import codecs import sys args = sys.argv file_ = sys.stdout if len(args) > 1: file_ = codecs.open(args[1], "a") net_trained = bert_model() print("how many emojis do you want ?") emoji_num = int(input()) quit = False while quit == False: s = "" print("Please input the text you want to emojify.") input_text = input() s += input_text if input_text == "q" or input_text == "\n": exit() output = predict(input_text, net_trained, emoji_num).tolist() for i in range(len(output[0])): s += label_to_emoji[output[0][i]] print(s, file=file_)
def run(): ''' Reads the LIMITED data for SBER ''' query = ''' SELECT * FROM ( SELECT * FROM {}_train ORDER BY date_time DESC LIMIT 3000 )Var1 ORDER BY date_time ASC '''.format(ASSET) df = pd.read_sql(query, engine) ''' Sets the datetime index, drops duplicates and nulls ''' df['date_time'] = pd.to_datetime( df['date_time'], errors='coerce' ) df = df.set_index('date_time') df.dropna(inplace=True) ''' Calculates proportion of each row in order book to the apropriate section(bid or offer) ''' #Offer OC_cols = df.loc[ :, 'offer_count_10':'offer_count_1' ] df_offer_count_proportion =\ OC_cols.div(OC_cols.sum(axis=1), axis=0) #Bid BC_cols = df.loc[ :, 'bid_count_10':'bid_count_1' ] df_bid_count_proportion =\ BC_cols.div(BC_cols.sum(axis=1), axis=0) ''' Calculates offer/bid ratio per row ''' offer_bid_ratio = pd.DataFrame( OC_cols.sum(axis=1) /\ BC_cols.sum(axis=1)) ''' Drops columns with separate bids and asks ''' cols_to_drop = [ 'offer_count_10', 'offer_count_9', 'offer_count_8', 'offer_count_7', 'offer_count_6', 'offer_count_5', 'offer_count_4', 'offer_count_3', 'offer_count_2', 'offer_count_1', 'bid_count_10', 'bid_count_9', 'bid_count_8', 'bid_count_7', 'bid_count_6', 'bid_count_5', 'bid_count_4', 'bid_count_3', 'bid_count_2', 'bid_count_1' ] df.drop(cols_to_drop, axis=1, inplace=True) ''' Concatenates single df for analysis and drops nulls ''' list_of_dfs = [ df, df_offer_count_proportion, df_bid_count_proportion, offer_bid_ratio ] temp_df = pd.concat(list_of_dfs, axis=1) temp_df.dropna(inplace=True) ''' Appends indicators and drops nulls ''' for key in dict_of_tf: temp_df = append_indicators( temp_df, key, list_with_indicators ) temp_df = temp_df.dropna() print(temp_df.shape) ''' Makes predictions from the latest uploaded data with shifted threshold ''' y_pred = predict(clf, temp_df, PROBA_THRESH) ''' Uploads a signal to the DB ''' if y_pred[-1] == 'up': sql = """UPDATE `trade_signals` SET `signal` = 'long', `dist_to_max`={}, `dist_to_min`={} WHERE `asset`='{}'"""\ .format( DIST_TO_MAX_HIGH, DIST_TO_MIN_LOW, ASSET ) cursor.execute(sql) db.commit() print( datetime.datetime.now().time(), 'Long ', ASSET ) elif y_pred[-1] == 'down': sql = """UPDATE `trade_signals` SET `signal` = 'short', `dist_to_max`={}, `dist_to_min`={} WHERE `asset`='{}'"""\ .format( DIST_TO_MAX_LOW, DIST_TO_MIN_HIGH, ASSET ) cursor.execute(sql) db.commit() print( datetime.datetime.now().time(), 'Short ', ASSET ) elif y_pred[-1] == 'nothing': sql = """UPDATE `trade_signals` SET `signal` = 'nothing', `dist_to_max`=0, `dist_to_min`=0 WHERE `asset`='{}'""".format(ASSET) cursor.execute(sql) db.commit() print( datetime.datetime.now().time(), 'Nothing ', ASSET )
import numpy as np import argparse from utils.build_model1 import * from utils.build_model2 import * from utils.predict import predict parser = argparse.ArgumentParser() parser.add_argument('--train_feat', type=str, help='Train Features? (y/n') parser.add_argument('--train_model', type=str, help='Train Model? (y/n') args = parser.parse_args() train_y_step_1 = np.load('./trained/train_y_step_1.npy') test_y_step_1 = np.load('./trained/test_y_step_1.npy') train_y_step_2 = np.load('./trained/train_y_step_2.npy') test_y_step_2 = np.load('./trained/test_y_step_2.npy') if args.train_feat == 'y': from utils.features import * else: train_X = np.load('./trained/train_X.npy') test_X = np.load('./trained/test_X.npy') if args.train_model == 'y': model1 = build_model1(train_X, test_X, train_y_step_1, test_y_step_1) model2 = build_model2(train_X, test_X, train_y_step_2, test_y_step_2) predict(model1, model2, test_X) else: from utils.prediction import *
def get_prediciton(): data = request.get_json() response = predict(data['text']) return jsonify({"text": response})