def get_dataset(dataset_name, normalization): # Load dataset (train_images, train_labels), (test_images, test_labels) = datasets.get_dataset(dataset_name) # Normalize data if normalization == "-1to1": train_images, min, max = preprocessing.normalize_minus_one_to_one( train_images) test_images = preprocessing.normalize_minus_one_to_one( test_images, min, max) elif normalization == 'gaussian': train_images, mean, std = preprocessing.normalize_gaussian( train_images) test_images = preprocessing.normalize_gaussian(test_images, mean, std) return (train_images, train_labels), (test_images, test_labels)
(train_images, train_labels), (test_images, test_labels) = datasets.get_dataset(DATASET_NAME) if AUX_DATASET_NAME: (aux_images, _), _ = datasets.get_dataset(AUX_DATASET_NAME) train_images = np.concatenate((train_images, aux_images), axis=0) # Normalize data if NORMALIZATION == "-1to1": train_images, min, max = preprocessing.normalize_minus_one_to_one( train_images) test_images = preprocessing.normalize_minus_one_to_one( test_images, min, max) elif NORMALIZATION == 'gaussian': train_images, mean, std = preprocessing.normalize_gaussian( train_images) test_images = preprocessing.normalize_gaussian(test_images, mean, std) # Load ensemble models ensemble_model_names = saveload.get_ensemble_model_names() model_names = ensemble_model_names[ENSEMBLE_LOAD_NAME][DATASET_NAME] print(model_names) measures = {'endd': defaultdict(list), 'ensm': defaultdict(list)} for n_models in N_MODELS_LIST: # Get model names if SAMPLE_ENSEMBLE_MODELS: model_name_subset = np.random.choice(model_names, n_models) else: model_name_subset = model_names[:n_models] #model_name_subset = ['vgg_cifar10_cifar10_25']