def main(_):

    hparams = {

        HP_TOKEN_TYPE: HP_TOKEN_TYPE.domain.values[1],
        HP_VOCAB_SIZE: HP_VOCAB_SIZE.domain.values[0],

        # Preprocessing
        HP_MEL_BINS: HP_MEL_BINS.domain.values[0],
        HP_FRAME_LENGTH: HP_FRAME_LENGTH.domain.values[0],
        HP_FRAME_STEP: HP_FRAME_STEP.domain.values[0],
        HP_HERTZ_LOW: HP_HERTZ_LOW.domain.values[0],
        HP_HERTZ_HIGH: HP_HERTZ_HIGH.domain.values[0]

    }

    _hparams = {k.name: v for k, v in hparams.items()}

    texts_gen = common_voice.texts_generator(FLAGS.data_dir)

    encoder_fn, decoder_fn, vocab_size = encoding.build_encoder(texts_gen,
        output_dir=FLAGS.output_dir, hparams=_hparams)
    _hparams[HP_VOCAB_SIZE.name] = vocab_size

    train_dataset, train_size = common_voice.load_dataset(
        FLAGS.data_dir, 'train')
    print('Train size:', train_size)
    train_dataset = preprocessing.preprocess_dataset(
        train_dataset,
        encoder_fn=encoder_fn,
        hparams=_hparams)
    write_dataset(train_dataset, train_size, 'train')

    dev_dataset, dev_size = common_voice.load_dataset(
        FLAGS.data_dir, 'dev')
    print('Dev size:', dev_size)
    dev_dataset = preprocessing.preprocess_dataset(
        dev_dataset,
        encoder_fn=encoder_fn,
        hparams=_hparams)
    write_dataset(dev_dataset, dev_size, 'dev')

    test_dataset, test_size = common_voice.load_dataset(
        FLAGS.data_dir, 'test')
    print('Test size:', test_size)
    test_dataset = preprocessing.preprocess_dataset(
        test_dataset,
        encoder_fn=encoder_fn,
        hparams=_hparams)
    write_dataset(test_dataset, test_size, 'test')
예제 #2
0
 def _dataset_fn(name):
     dataset, dataset_size = common_voice.load_dataset(base_path, name)
     dataset = preprocessing.preprocess_dataset(dataset,
                                                encoder_fn=encoder_fn,
                                                batch_size=batch_size,
                                                hparams=hparams)
     steps_per_epoch = dataset_size // batch_size
     return dataset, steps_per_epoch
    def _dataset_fn(suffix, base_path, task):

        dataset, dataset_size = babi_dialog.load_dataset(suffix=suffix,
                                                         base_path=base_path,
                                                         hparams=hparams,
                                                         task=task)

        dataset = preprocessing.preprocess_dataset(
            dataset,
            tokenizer_fn=tokenizer_fn,
            vocab_table=vocab_table,
            candidates_table=candidates_table,
            hparams=hparams)

        return dataset, dataset_size
예제 #4
0
def main(_):

    hparams = {
        HP_TOKEN_TYPE: HP_TOKEN_TYPE.domain.values[1],
        HP_VOCAB_SIZE: HP_VOCAB_SIZE.domain.values[0],

        # Preprocessing
        HP_MEL_BINS: HP_MEL_BINS.domain.values[0],
        HP_FRAME_LENGTH: HP_FRAME_LENGTH.domain.values[0],
        HP_FRAME_STEP: HP_FRAME_STEP.domain.values[0],
        HP_HERTZ_LOW: HP_HERTZ_LOW.domain.values[0],
        HP_HERTZ_HIGH: HP_HERTZ_HIGH.domain.values[0],
        HP_DOWNSAMPLE_FACTOR: HP_DOWNSAMPLE_FACTOR.domain.values[0]
    }

    train_splits = ['dev-clean']

    dev_splits = ['dev-clean']

    test_splits = ['dev-clean']

    # train_splits = [
    #     'train-clean-100',
    #     'train-clean-360',
    #     'train-other-500'
    # ]

    # dev_splits = [
    #     'dev-clean',
    #     'dev-other'
    # ]

    # test_splits = [
    #     'test-clean',
    #     'test-other'
    # ]

    _hparams = {k.name: v for k, v in hparams.items()}

    texts_gen = librispeech.texts_generator(FLAGS.data_dir,
                                            split_names=train_splits)

    encoder_fn, decoder_fn, vocab_size = encoding.get_encoder(
        output_dir=FLAGS.output_dir,
        hparams=_hparams,
        texts_generator=texts_gen)
    _hparams[HP_VOCAB_SIZE.name] = vocab_size

    train_dataset = librispeech.load_dataset(FLAGS.data_dir, train_splits)
    dev_dataset = librispeech.load_dataset(FLAGS.data_dir, dev_splits)
    test_dataset = librispeech.load_dataset(FLAGS.data_dir, test_splits)

    train_dataset = preprocessing.preprocess_dataset(
        train_dataset,
        encoder_fn=encoder_fn,
        hparams=_hparams,
        max_length=FLAGS.max_length,
        save_plots=True)
    write_dataset(train_dataset, 'train')

    dev_dataset = preprocessing.preprocess_dataset(dev_dataset,
                                                   encoder_fn=encoder_fn,
                                                   hparams=_hparams,
                                                   max_length=FLAGS.max_length)
    write_dataset(dev_dataset, 'dev')

    test_dataset = preprocessing.preprocess_dataset(
        test_dataset,
        encoder_fn=encoder_fn,
        hparams=_hparams,
        max_length=FLAGS.max_length)
    write_dataset(test_dataset, 'test')