def metaQuery(self, queryKey, peg, date, delta): uu = UrlUtils() beamID = self._frame.beamID direction = self._frame.direction lat_min = min(peg.latStart, peg.latEnd) lat_max = max(peg.latStart, peg.latEnd) params = { queryKey: getattr(self._frame, self._frame._mappingLoad[queryKey]), #'orbitNumber':orbit, 'beamID': beamID, 'system_version': uu.version, 'latitudeIndexMin': int(math.floor( (lat_min) / FrameInfoExtractor._latitudeResolution)), 'latitudeIndexMax': int(math.floor( (lat_max) / FrameInfoExtractor._latitudeResolution)), 'direction': direction } metList = postQuery(buildQuery(params, ['cross-boundaries'])) if metList: metList = [ self.refineFromTime(metList[0], date, delta), metList[1] ] metList = [self.refineByPlatform(metList[0]), metList[1]] return metList
def sort_data(inps): urls = [] durls = {} coords = {} for fid in range(inps['frameIDs'][0], inps['frameIDs'][1] + 1): for plat in inps['platforms']: for sw in inps['swaths']: meta = { 'frameID': str(fid), 'trackNumber': str(inps['track']), 'direction.raw': inps['direction'], 'dataset_type': 'interferogram', 'platform.raw': plat, "swath": sw } if 'tags' in inps: meta['tags'] = inps['tags'] query = buildQuery(meta, []) #sv in form 'v1.1.1' ret, status = postQuery(query, sv=inps['sys_ver'], conf=inps['conf']) for r in ret: urls.append(r['url']) ms, sl = get_dates(urls[-1], True) durls[ms + sl + str(sw)] = r['url'] coords[r['url']] = r['imageCorners'] ourls = np.unique(np.array(urls)) urls = rm_incomplete_swaths(ourls, len(inps['swaths'])) urls = rm_dups(urls, durls, inps['swaths']) urls = get_urls_sets(urls, coords, inps['nscenes']) return urls
def searchMasterFrames(self, peg): uu = UrlUtils() beamID = self._frame.beamID direction = self._frame.direction lat_min = min(peg.latStart, peg.latEnd) lat_max = max(peg.latStart, peg.latEnd) params = { 'platform': self._frame.spacecraftName, 'trackNumber': self._frame.trackNumber, 'dataset_type': self._frame.dataset_type, 'beamID': beamID, 'system_version': uu.version, 'latitudeIndexMin': int(math.floor( (lat_min) / FrameInfoExtractor._latitudeResolution)), 'latitudeIndexMax': int(math.floor( (lat_max) / FrameInfoExtractor._latitudeResolution)), 'direction': direction } #get the list of meta close to the reference frame metList = postQuery(buildQuery(params, ['cross-boundaries'])) if metList[0]: metList = self.refineFromTime(metList[0], self._frame.sensingStart, self._maxTimeStitch) return metList
def getMetadata(track=None, frame=None, beam=None, passdir=None, platform=None): """ Download metadata json from product repo for product with ID passed in. """ uu = UrlUtils() params = { "dataset": "interferogram", "trackNumber": str(track), "direction": passdir, "latitudeIndexMin": frame[0], "latitudeIndexMax": frame[1], "beamID": beam, 'system_version': uu.version } # get GRQ request ''' r = requests.get(url, params=params, verify=False) r.raise_for_status() res_json = r.json() if res_json['count'] == 0: raise ValueError("Found no interferogram product for Track %d, Frame %d."%(track,frame)) ''' query = buildQuery(params, 'within') metList, status = postQuery(query) return metList
def prep_inputs(ml_dir, ctx_file, in_file): # get context with open(ctx_file) as f: j = json.load(f) # get kwargs kwargs = j #mstarch - with containerization, "kwargs" are in context at top level #json.loads(j['rule']['kwargs']) # get classmap file and version cm_file = os.path.basename(kwargs['classmap_file'].strip()) match = re.search(r'classmap_(datav.*?)\.json', cm_file) if not match: raise RuntimeError("Failed to extract classmap version: %s" % cm_file) cm_version = match.group(1) # get features file and version ft_file = os.path.basename(kwargs['feat_file'].strip()) match = re.search(r'(featv.*?)\.json', ft_file) if not match: raise RuntimeError("Failed to extract feature version: %s" % ft_file) ft_version = match.group(1) # set classifier ID clf_version = kwargs['clf_version'] clf_type = kwargs['clf_type'] username = j['username'] #mstarch - username is a paramemter rule_name = j['name'] #mstarch - rule_name is a parameter clf_name = "predictor_model-phunw_clfv%s_%s_%s-%s-%s" % ( clf_version, cm_version, ft_version, username, rule_name) # get urls ret, status = postQuery({'query': j['query'] }) #mstarch - passthrough is now a parameter urls = [i['url'] for i in ret] # create input json input = { "clf_name": clf_name, "clf_type": clf_type, "classmap_file": cm_file, "feat_file": ft_file, "crossvalidate": 0, "saveclf": 1, "cacheoutput": 0, "urls": urls, } # create product directory and chdir os.makedirs(clf_name) os.chdir(clf_name) # write input file with open(in_file, 'w') as f: json.dump(input, f, indent=2) # copy classmap and feature files shutil.copy(os.path.join(ml_dir, 'classmaps', cm_file), cm_file) shutil.copy(os.path.join(ml_dir, 'features', ft_file), ft_file)
def getUrls(sensor, token): meta = {'dataset': 'interferogram', 'sensor': sensor, 'tags': [token]} ret, status = postQuery(buildQuery(meta, [])) inps = [] if len(ret): cnt = 0 for i in ret: label = getIntLabel(hasToken(i['user_tags'], token)) if 'user_tags' in i and label is not None: inps.append([i['url'], label]) return inps
def getData(args): uu = UrlUtils() # create a password manager meta = {'tags': args.tags, 'tag_operator': args.operator} ret, status = postQuery(buildQuery(meta)) try: os.mkdir(args.dir) except Exception: print("directory", args.dir, "already present") os.chdir(args.dir) for i in ret: url = i['url'] odir = os.getcwd() ndir = url.split('/')[-1] try: os.mkdir(ndir) except Exception: pass os.chdir(ndir) for pr in args.products: if pr.endswith('.xml'): command = 'curl -k -f -u' + uu.dav_u + ':' + uu.dav_p + ' -O ' + os.path.join( url, pr.replace('.xml', '')) os.system(command) command = 'curl -k -f -u' + uu.dav_u + ':' + uu.dav_p + ' -O ' + os.path.join( url, pr) os.system(command) try: password_mgr = urllib.request.HTTPPasswordMgrWithDefaultRealm() # Add the username and password. password_mgr.add_password(None, urllib.parse.urlparse(url).netloc, uu.dav_u, uu.dav_p) handler = urllib.request.HTTPBasicAuthHandler(password_mgr) # create "opener" (OpenerDirector instance) opener = urllib.request.build_opener(handler) # use the opener to fetch a URL response = opener.open(url).read().decode('utf-8') except Exception as e: print(e) if (response): parser = MyHTMLParser(args.re, args.nre) parser.feed(response) print(parser.results) for i in parser.results: command = 'curl -k -f -u' + uu.dav_u + ':' + uu.dav_p + ' -O ' + os.path.join( url, i) os.system(command) os.chdir(odir)
def getData(sensor, token): meta = {'dataset': 'interferogram', 'sensor': sensor, 'tags': [token]} ret, status = postQuery(buildQuery(meta, [])) if len(ret): cnt = 0 cnt1 = 0 inps = [] for i in ret: label = getIntLabel(hasToken(i['user_tags'], token)) if 'user_tags' in i and label is not None: print('processing', i['url'], cnt, len(ret)) extractFeatures(i, label) cnt += 1 print(cnt) '''
def masterExists(self, fm): uu = UrlUtils() extremes = fm.getExtremes(fm.bbox) latMin = extremes[0] latMax = extremes[1] latDelta = (latMax - latMin) / 3. latitudeResolution = .1 params = { 'sensor': fm.platform, 'trackNumber': fm.trackNumber, 'latitudeIndexMin': int(math.floor((latMin - latDelta) / latitudeResolution)), 'latitudeIndexMax': int(math.ceil((latMax + latDelta) / latitudeResolution)), 'dataset_type': fm.dataset_type, 'system_version': uu.version, 'direction': fm.direction, 'lookDirection': fm.lookDirection, 'reference': True, } if fm.beamID: params['beamID'] = fm.beamID exists = False metList, status = postQuery(buildQuery(params, ['within'])) if (status): metObj = createMetaObjects(metList) if (len(metObj) > 1): print( "WARNING FrameInfoExtractor: Expecting only one frame to be reference" ) if metObj: exists = True return exists
def sort_data_dev(inps): urls = [] durls = {} coords = {} swaths = {} for plat in inps['platforms']: for sw in inps['swaths']: meta = { 'trackNumber': str(inps['track']), 'direction.raw': inps['direction'], 'dataset_type': 'interferogram', 'latitudeIndexMin': str(inps['latitudeIndexMin']), 'latitudeIndexMax': str(inps['latitudeIndexMax']), 'platform.raw': plat, 'swath': sw } options = ['cross-boundaries'] if 'tags' in inps: meta['tags'] = inps['tags'] query = buildQuery(meta, options) #sv in form 'v1.1.1' ret, status = postQuery(query, sv=inps['sys_ver'], conf=inps['conf']) for r in ret: urls.append(r['url']) ms, sl = get_dates(urls[-1], True) durls[ms + sl + str(sw)] = r['url'] coords[r['url']] = r['imageCorners'] swaths[r['url']] = sw ourls = np.unique(np.array(urls)) urls = rm_incomplete_swaths(ourls, len(inps['swaths'])) urls = rm_dups(urls, durls, inps['swaths']) dates_complete = get_urls_sets_dev( urls, coords, swaths, [inps['latitudeIndexMin'] / 10., inps['latitudeIndexMax'] / 10.]) urls, dates_incomplete = url_from_dates(dates_complete) return urls, dates_incomplete
def loadQuery(querymeta, queryoptions=[], queryoutfile=None, cache=False): ''' builds/posts the faceted search query specified in querymeta and dumps the result to queryoutfile. if queryoutfile already exists, the query is loaded from disk rather than executed. ''' if not cache or not pathexists(queryoutfile): print('executing faceted search query...') from utils.queryBuilder import postQuery, buildQuery from utils.contextUtils import toContext ret, status = postQuery(buildQuery(querymeta, queryoptions)) if cache and status: # only dump the query if caching enabled and postQuery succeeds with open(queryoutfile, 'wb') as fid: pickle.dump(ret, fid) elif cache: print('loading cached query from %s...' % queryoutfile) with open(queryoutfile, 'rb') as fid: ret = pickle.load(fid) print('query returned %d products' % len(ret)) return ret
def get_mets(inps): mets = [] for plat in inps['platforms']: for sw in inps['swaths']: meta = { 'trackNumber': str(inps['track']), 'direction.raw': inps['direction'], 'dataset_type': 'interferogram', 'latitudeIndexMin': str(inps['latitudeIndexMin']), 'latitudeIndexMax': str(inps['latitudeIndexMax']), 'platform.raw': plat, 'swath': sw } options = ['cross-boundaries'] if 'tags' in inps: meta['tags'] = inps['tags'] query = buildQuery(meta, options) #sv in form 'v1.1.1' ret, status = postQuery(query, sv=inps['sys_ver'], conf=inps['conf']) for r in ret: mets.append(r) return mets
def searchSlaveFrames(self, peg): uu = UrlUtils() beamID = self._frame.beamID direction = self._frame.direction lat_min = min(peg.latStart, peg.latEnd) lat_max = max(peg.latStart, peg.latEnd) params = { 'sensor': self._frame.platform, 'trackNumber': self._frame.trackNumber, 'dataset_type': self._frame.dataset_type, 'beamID': beamID, 'system_version': uu.version, 'latitudeIndexMin': int(math.floor( (lat_min) / FrameInfoExtractor._latitudeResolution)), 'latitudeIndexMax': int(math.floor( (lat_max) / FrameInfoExtractor._latitudeResolution)), 'direction': direction } #get the list of meta close to the reference frame metList = postQuery(buildQuery(params, ['cross-boundaries'])) if metList: metList = self.refineByPlatform(metList[0]) newMet = [] for met in metList: newMet.append(self.groupByTime(met)) return newMet
def computeBaseline(self, fm): ret = True oi = OrbitInfo(fm) requester = Http() uu = UrlUtils() rest_url = uu.rest_url fmRef = FrameMetadata() # just need an estimate bbox, dummy = self.calculateCorners() fm._bbox = [] fm._refbbox = [] for bb in bbox: fm._bbox.append( [round(bb.getLatitude(), 2), round(bb.getLongitude(), 2)]) fm._refbbox.append( [round(bb.getLatitude(), 2), round(bb.getLongitude(), 2)]) if (fm._bbox[0][0] < fm._bbox[2][0]): # if latEarly < latLate then asc otherwise dsc fm._direction = 'asc' else: fm._direction = 'dsc' baseline = [0, 0, 0] uu = UrlUtils() extremes = fm.getExtremes(fm.bbox) latMin = extremes[0] latMax = extremes[1] latDelta = (latMax - latMin) / 3. latitudeResolution = .1 params = { 'sensor': fm.platform, 'trackNumber': fm.trackNumber, 'dataset_type': fm.dataset_type, 'latitudeIndexMin': int(math.floor((latMin - latDelta) / latitudeResolution)), 'latitudeIndexMax': int(math.ceil((latMax + latDelta) / latitudeResolution)), 'direction': fm.direction, 'system_version': uu.version, 'lookDirection': fm.lookDirection, 'reference': True } if fm.beamID: params['beamID'] = fm.beamID #print("params", params) query = buildQuery(params, ['within']) #print("query: %s" % json.dumps(query, indent=2)) metList, status = postQuery(query) # if empty no results available if status: metObj = createMetaObjects(metList) if metObj: # there should be only one result if (len(metObj) > 1): print( "WARNING FrameInfoExtractor: Expecting only one frame to be reference" ) fmRef = metObj[0] oiRef = OrbitInfo(fmRef) oi.computeBaseline(oiRef) bl = oi.getBaseline() baseline = [bl['horz'], bl['vert'], bl['total']] fm.refbbox = fmRef.refbbox fm.reference = False fm._bbox = [] for bb in bbox: fm._bbox.append([ round(bb.getLatitude(), 2), round(bb.getLongitude(), 2) ]) if (fm._bbox[0][0] < fm._bbox[2][0]): # if latEarly < latLate then asc otherwise dsc fm._direction = 'asc' else: fm._direction = 'dsc' else: import numpy as np fm.reference = True pos = np.array(fm._bbox) d10 = pos[1] - pos[0] d30 = pos[3] - pos[0] d23 = pos[2] - pos[3] d21 = pos[2] - pos[1] pos[0] += self._buffer * (-d10 - d30) pos[1] += self._buffer * (d10 - d21) pos[2] += self._buffer * (d23 + d21) pos[3] += self._buffer * (-d23 + d30) fm._refbbox = pos.tolist() fm.horizontalBaseline = baseline[0] fm.verticalBaseline = baseline[1] fm.totalBaseline = baseline[2] else: ret = False return ret
def check_reference(dataset, md): """Check reference of this metadata against what's in GRQ.""" # get config uu = UrlUtils() rest_url = uu.rest_url # is this scene a reference? fm_md = copy.deepcopy(md) fm = FrameMetadata() fm.load(fm_md) #sys.stderr.write("fm.reference: %s\n" % fm.reference) #sys.stderr.write("fm.trackNumber: %s\n" % fm.trackNumber) #sys.stderr.write("fm.beamID: %s\n" % fm.beamID) #sys.stderr.write("fm.latitudeIndexMin: %s\n" % fm.latitudeIndexMin) #sys.stderr.write("fm.latitudeIndexMax: %s\n" % fm.latitudeIndexMax) # if not a reference, save if fm.reference == False: return { 'ok_to_save': True, 'suspicious_flag': False, 'suspicious_code': '' } # check if reference exists already extremes = fm.getExtremes(fm.bbox) latMin = extremes[0] latMax = extremes[1] lonMin = extremes[2] lonMax = extremes[3] latDelta = (latMax - latMin) / 3. latitudeResolution = .1 params = { 'sensor': fm.platform, 'dataset_type': dataset, 'trackNumber': fm.trackNumber, 'latitudeIndexMin': int(math.floor((latMin - latDelta) / latitudeResolution)), 'latitudeIndexMax': int(math.ceil((latMax + latDelta) / latitudeResolution)), 'system_version': uu.version, 'direction': fm.direction, 'lookDirection': fm.lookDirection, 'reference': True, } if fm.beamID: params['beamID'] = fm.beamID metList, status = postQuery(buildQuery(params, ['within'])) metObj = createMetaObjects(metList) # if none found, save if len(metObj) == 0: return { 'ok_to_save': True, 'suspicious_flag': False, 'suspicious_code': '' } # loop over frames and check if in this frame's bbox inbbox_count = 0 frames = [] for met_idx, tmp_fm in enumerate(metObj): inbbox = fm.isInBbox(tmp_fm.refbbox) if inbbox: inbbox_count += 1 frames.append({ 'id': os.path.splitext(metList[met_idx]['dfdn']['ProductName'])[0], 'archive_filename': metList[met_idx]['archive_filename'], 'inbbox': inbbox, }) #print "true_count:", true_count # if all not in bbox, okay to save but flag suspicious if inbbox_count == 0: return { 'ok_to_save': True, 'frames': frames, 'suspicious_flag': True, 'suspicious_code': 'no_frames_in_bbox' } # if one is in bbox, not okay to update elif inbbox_count == 1: #return { 'ok_to_save': False, 'reprocess': True, 'suspicious_flag': True, 'suspicious_code': 'one_frame_in_bbox' } # fail for now; it can be eventually reprocessed after the initial re-ingest return { 'ok_to_save': False, 'frames': frames, 'reprocess': False, 'suspicious_flag': True, 'suspicious_code': 'one_frame_in_bbox' } # if more than one is in bbox, not okay to update and flag else: return { 'ok_to_save': False, 'frames': frames, 'reprocess': False, 'suspicious_flag': True, 'suspicious_code': 'more_than_one_frame_in_bbox' }
def get_list(version,sensor): meta = {'system_version':version,'dataset':'interferogram','sensor':sensor} query = qb.buildQuery(meta,[]) return qb.postQuery(query,version)