예제 #1
0
파일: fcn.py 프로젝트: TinBacon/MyDetectron
def _gen_blobs(entry, im_scale, batch_idx):
    """Add Mask R-CNN specific blobs to the input blob dictionary."""
    M = cfg.MRCNN.RESOLUTION

    selected_inds = np.where(entry['gt_classes'] > 0)[0]

    polys = [entry['segms'][i] for i in selected_inds]

    # Class labels and bounding boxes for the polys
    mask_class_labels = entry['gt_classes'][selected_inds]
    mask_rois = np.array(entry['boxes'][selected_inds], dtype='float32')

    # add mask polys
    masks = blob_utils.zeros((selected_inds.shape[0], M**2), int32=True)
    for i in range(len(polys)):
        # Rasterize the polygon mask to an M x M class labels image
        poly_gt = polys[i]
        mask_roi = mask_rois[i]
        mask_class_label = mask_class_labels[i]
        mask = segm_utils.polys_to_mask_wrt_box(poly_gt, mask_roi, M)
        mask = mask_class_label * np.array(mask > 0, dtype=np.int32)
        masks[i, :] = np.reshape(mask, M**2)

    blob_dict = {}
    blob_dict['masks_int32'] = masks

    return blob_dict
예제 #2
0
def add_mask_rcnn_blobs(blobs, sampled_boxes, roidb, im_scale, batch_idx):
    """Add Mask R-CNN specific blobs to the input blob dictionary."""
    # Prepare the mask targets by associating one gt mask to each training roi
    # that has a fg (non-bg) class label.
    M = cfg.MRCNN.RESOLUTION
    polys_gt_inds = np.where(
        (roidb['gt_classes'] > 0) & (roidb['is_crowd'] == 0)
    )[0]
    polys_gt = [roidb['segms'][i] for i in polys_gt_inds]
    boxes_from_polys = segm_utils.polys_to_boxes(polys_gt)
    # Keep only a subset of classes (set A in the paper) for mask training
    if cfg.TRAIN.MRCNN_FILTER_LABELS:
        keep_label_set = set(cfg.TRAIN.MRCNN_LABELS_TO_KEEP)
        labels_int32 = blobs['labels_int32']
        labels_int32_keep = np.array(
            [(l if l in keep_label_set else 0) for l in labels_int32],
            dtype=labels_int32.dtype)
    else:
        labels_int32_keep = blobs['labels_int32']
    fg_inds = np.where(labels_int32_keep > 0)[0]
    roi_has_mask = labels_int32_keep.copy()
    roi_has_mask[roi_has_mask > 0] = 1

    if fg_inds.shape[0] > 0:
        # Class labels for the foreground rois
        mask_class_labels = blobs['labels_int32'][fg_inds]
        masks = blob_utils.zeros((fg_inds.shape[0], M**2), int32=True)

        # Find overlap between all foreground rois and the bounding boxes
        # enclosing each segmentation
        rois_fg = sampled_boxes[fg_inds]
        overlaps_bbfg_bbpolys = box_utils.bbox_overlaps(
            rois_fg.astype(np.float32, copy=False),
            boxes_from_polys.astype(np.float32, copy=False)
        )
        # Map from each fg rois to the index of the mask with highest overlap
        # (measured by bbox overlap)
        fg_polys_inds = np.argmax(overlaps_bbfg_bbpolys, axis=1)

        # add fg targets
        for i in range(rois_fg.shape[0]):
            fg_polys_ind = fg_polys_inds[i]
            poly_gt = polys_gt[fg_polys_ind]
            roi_fg = rois_fg[i]
            # Rasterize the portion of the polygon mask within the given fg roi
            # to an M x M binary image
            mask = segm_utils.polys_to_mask_wrt_box(poly_gt, roi_fg, M)
            mask = np.array(mask > 0, dtype=np.int32)  # Ensure it's binary
            masks[i, :] = np.reshape(mask, M**2)
    else:  # If there are no fg masks (it does happen)
        # The network cannot handle empty blobs, so we must provide a mask
        # We simply take the first bg roi, given it an all -1's mask (ignore
        # label), and label it with class zero (bg).
        bg_inds = np.where(blobs['labels_int32'] == 0)[0]
        # rois_fg is actually one background roi, but that's ok because ...
        rois_fg = sampled_boxes[bg_inds[0]].reshape((1, -1))
        # We give it an -1's blob (ignore label)
        masks = -blob_utils.ones((1, M**2), int32=True)
        # We label it with class = 0 (background)
        mask_class_labels = blob_utils.zeros((1, ))
        # Mark that the first roi has a mask
        roi_has_mask[0] = 1

    if cfg.MRCNN.CLS_SPECIFIC_MASK:
        masks = _expand_to_class_specific_mask_targets(masks, mask_class_labels)

    # Scale rois_fg and format as (batch_idx, x1, y1, x2, y2)
    rois_fg *= im_scale
    repeated_batch_idx = batch_idx * blob_utils.ones((rois_fg.shape[0], 1))
    rois_fg = np.hstack((repeated_batch_idx, rois_fg))

    # Update blobs dict with Mask R-CNN blobs
    blobs['mask_rois'] = rois_fg
    blobs['roi_has_mask_int32'] = roi_has_mask
    blobs['masks_int32'] = masks
예제 #3
0
def add_refine_local_mask_blobs(blobs, sampled_boxes, roidb, im_scale,
                                batch_idx, data):
    """Add RefineNet Mask specific blobs to the input blob dictionary."""
    # Prepare the mask targets by associating one gt mask to each training roi
    # that has a fg (non-bg) class label.
    M = cfg.REFINENET.RESOLUTION
    up_scale = cfg.REFINENET.UP_SCALE
    polys_gt_inds = np.where((roidb['gt_classes'] > 0)
                             & (roidb['is_crowd'] == 0))[0]
    gt_classes = roidb['gt_classes'][polys_gt_inds]
    polys_gt = [roidb['segms'][i] for i in polys_gt_inds]
    boxes_from_polys = segm_utils.polys_to_boxes(polys_gt)
    fg_inds = np.where(blobs['labels_int32'] > 0)[0]
    roi_has_mask = blobs['labels_int32'].copy()
    roi_has_mask[roi_has_mask > 0] = 1

    # Define size variables
    inp_h, inp_w = data.shape[2], data.shape[3]
    pad_img_h, pad_img_w = inp_h / im_scale, inp_w / im_scale

    if fg_inds.shape[0] > 0:
        # Class labels for the foreground rois
        mask_class_labels = blobs['labels_int32'][fg_inds]
        masks = blob_utils.zeros((fg_inds.shape[0], M**2), int32=True)

        # Find overlap between all foreground rois and the bounding boxes
        # enclosing each segmentation
        rois_fg = sampled_boxes[fg_inds]
        overlaps_bbfg_bbpolys = box_utils.bbox_overlaps(
            rois_fg.astype(np.float32, copy=False),
            boxes_from_polys.astype(np.float32, copy=False))
        # Map from each fg rois to the index of the mask with highest overlap
        # (measured by bbox overlap)
        fg_polys_inds = np.argmax(overlaps_bbfg_bbpolys, axis=1)

        # Expand the foreground rois by a factor of up_scale and
        # clip by the padded image boundary
        pad_rois_fg = box_utils.expand_boxes(rois_fg, up_scale)
        pad_rois_fg = box_utils.clip_boxes_to_image(pad_rois_fg, pad_img_h,
                                                    pad_img_w)

        if cfg.REFINENET.ONLY_USE_CROWDED_SAMPLES:
            # Only use crowded samples to train the RefineNet
            THRES = cfg.REFINENET.OVERLAP_THRESHOLD
            for i in range(rois_fg.shape[0]):
                overlap = overlaps_bbfg_bbpolys[i]
                if np.sum(overlap > THRES) > 1:
                    # if has multiple instances overlapped, use it for training
                    fg_polys_ind = fg_polys_inds[i]
                    poly_gt = polys_gt[fg_polys_ind]
                    pad_roi_fg = pad_rois_fg[i]
                    # Rasterize the portion of the polygon mask within the given fg roi
                    # to an M x M binary image
                    mask = segm_utils.polys_to_mask_wrt_box(
                        poly_gt, pad_roi_fg, M)
                    mask = np.array(mask > 0,
                                    dtype=np.int32)  # Ensure it's binary
                    masks[i, :] = np.reshape(mask, M**2)

                else:  # Only one instance, then set label to be -1 (ignored)
                    masks[i, :] = -1
                    mask_class_labels[i] = 0
        elif cfg.REFINENET.ASSIGN_LARGER_WEIGHT_FOR_CROWDED_SAMPLES:
            loss_weights = blob_utils.ones((rois_fg.shape[0], ))
            for i in range(rois_fg.shape[0]):
                fg_polys_ind = fg_polys_inds[i]
                poly_gt = polys_gt[fg_polys_ind]
                pad_roi_fg = pad_rois_fg[i]
                class_label = mask_class_labels[i]

                # Rasterize the portion of the polygon mask within the given
                # fg roi to an M x M binary image
                mask = segm_utils.polys_to_mask_wrt_box(poly_gt, pad_roi_fg, M)
                mask = np.array(mask > 0, dtype=np.int32)  # Ensure it's binary
                masks[i, :] = np.reshape(mask, M**2)

                # And now determine the weight for each roi. If any instance
                # that is of the same class as the RoI, then we expect it to
                # be a hard sample and assigns a larger weight for this RoI
                for j in range(len(polys_gt)):
                    if j == fg_polys_ind:
                        continue
                    if gt_classes[
                            j] == class_label:  # only same class is valid
                        mask = segm_utils.polys_to_mask_wrt_box(
                            polys_gt[j], pad_roi_fg, M)
                        # and check if has anypart fall inside the bbox
                        is_inside_bbox = (np.sum(mask) > 0)
                        if is_inside_bbox:
                            loss_weights[i] = cfg.REFINENET.WEIGHT_LOSS_CROWDED
                            break  # early stop

        else:
            # add fg targets
            for i in range(rois_fg.shape[0]):
                fg_polys_ind = fg_polys_inds[i]
                poly_gt = polys_gt[fg_polys_ind]
                pad_roi_fg = pad_rois_fg[i]
                # Rasterize the portion of the polygon mask within the given fg roi
                # to an M x M binary image
                mask = segm_utils.polys_to_mask_wrt_box(poly_gt, pad_roi_fg, M)
                mask = np.array(mask > 0, dtype=np.int32)  # Ensure it's binary
                masks[i, :] = np.reshape(mask, M**2)

    else:  # If there are no fg masks (it does happen)
        # The network cannot handle empty blobs, so we must provide a mask
        # We simply take the first bg roi, given it an all -1's mask (ignore
        # label), and label it with class zero (bg).
        bg_inds = np.where(blobs['labels_int32'] == 0)[0]
        # pad_rois_fg is actually one background roi, but that's ok because ...
        pad_rois_fg = sampled_boxes[bg_inds[0]].reshape((1, -1))
        # We give it an -1's blob (ignore label)
        masks = -blob_utils.ones((1, M**2), int32=True)
        # We label it with class = 0 (background)
        mask_class_labels = blob_utils.zeros((1, ))
        # Mark that the first roi has a mask
        roi_has_mask[0] = 1

    if cfg.MRCNN.CLS_SPECIFIC_MASK:
        masks = _expand_to_class_specific_mask_targets(masks,
                                                       mask_class_labels)

    # Scale rois_fg and format as (batch_idx, x1, y1, x2, y2)
    pad_rois_fg = (pad_rois_fg.astype(np.float32)) * im_scale
    repeated_batch_idx = batch_idx * blob_utils.ones((pad_rois_fg.shape[0], 1))
    pad_rois_fg = np.hstack((repeated_batch_idx, pad_rois_fg)).astype(np.int32)

    # Update blobs dict with Refine-Net blobs
    blobs['refined_mask_rois'] = pad_rois_fg
    blobs['roi_has_refined_mask_int32'] = roi_has_mask
    blobs['refined_masks_int32'] = masks

    if cfg.REFINENET.ASSIGN_LARGER_WEIGHT_FOR_CROWDED_SAMPLES:
        blobs['loss_weights'] = loss_weights
예제 #4
0
def add_mask_rcnn_blobs(blobs, sampled_boxes, roidb, im_scale, batch_idx):
    """Add Mask R-CNN specific blobs to the input blob dictionary."""
    # Prepare the mask targets by associating one gt mask to each training roi
    # that has a fg (non-bg) class label.
    M = cfg.MRCNN.RESOLUTION
    polys_gt_inds = np.where((roidb['gt_classes'] > 0) &
                             (roidb['is_crowd'] == 0))[0]
    polys_gt = [roidb['segms'][i] for i in polys_gt_inds]
    boxes_from_polys = segm_utils.polys_to_boxes(polys_gt)
    # boxes_from_polys = [roidb['boxes'][i] for i in polys_gt_inds]
    fg_inds = np.where(blobs['labels_int32'] > 0)[0]
    roi_has_mask = blobs['labels_int32'].copy()
    roi_has_mask[roi_has_mask > 0] = 1

    if fg_inds.shape[0] > 0:
        # Class labels for the foreground rois
        mask_class_labels = blobs['labels_int32'][fg_inds]
        masks = blob_utils.zeros((fg_inds.shape[0], M**2), int32=True)

        # Find overlap between all foreground rois and the bounding boxes
        # enclosing each segmentation
        rois_fg = sampled_boxes[fg_inds]
        overlaps_bbfg_bbpolys = box_utils.bbox_overlaps(
            rois_fg.astype(np.float32, copy=False),
            boxes_from_polys.astype(np.float32, copy=False))
        # Map from each fg rois to the index of the mask with highest overlap
        # (measured by bbox overlap)
        fg_polys_inds = np.argmax(overlaps_bbfg_bbpolys, axis=1)

        # add fg targets
        for i in range(rois_fg.shape[0]):
            fg_polys_ind = fg_polys_inds[i]
            poly_gt = polys_gt[fg_polys_ind]
            roi_fg = rois_fg[i]
            # Rasterize the portion of the polygon mask within the given fg roi
            # to an M x M binary image
            mask = segm_utils.polys_to_mask_wrt_box(poly_gt, roi_fg, M)
            mask = np.array(mask > 0, dtype=np.int32)  # Ensure it's binary
            masks[i, :] = np.reshape(mask, M**2)
    else:  # If there are no fg masks (it does happen)
        # The network cannot handle empty blobs, so we must provide a mask
        # We simply take the first bg roi, given it an all -1's mask (ignore
        # label), and label it with class zero (bg).
        bg_inds = np.where(blobs['labels_int32'] == 0)[0]
        # rois_fg is actually one background roi, but that's ok because ...
        rois_fg = sampled_boxes[bg_inds[0]].reshape((1, -1))
        # We give it an -1's blob (ignore label)
        masks = -blob_utils.ones((1, M**2), int32=True)
        # We label it with class = 0 (background)
        mask_class_labels = blob_utils.zeros((1, ))
        # Mark that the first roi has a mask
        roi_has_mask[0] = 1

    if cfg.MRCNN.CLS_SPECIFIC_MASK:
        masks = _expand_to_class_specific_mask_targets(masks,
                                                       mask_class_labels)

    # Scale rois_fg and format as (batch_idx, x1, y1, x2, y2)
    rois_fg *= im_scale
    repeated_batch_idx = batch_idx * blob_utils.ones((rois_fg.shape[0], 1))
    rois_fg = np.hstack((repeated_batch_idx, rois_fg))

    # Update blobs dict with Mask R-CNN blobs
    blobs['mask_rois'] = rois_fg
    blobs['roi_has_mask_int32'] = roi_has_mask
    blobs['masks_int32'] = masks
예제 #5
0
def add_refined_mask_blobs(blobs, sampled_boxes, roidb, im_scale, batch_idx):
    """Add RefineNet specific blobs to the input blob dictionary."""
    # Prepare the mask targets by associating one gt mask to each training roi
    # that has a fg (non-bg) class label.
    dst_scale = cfg.REFINENET.SPATIAL_SCALE
    polys_gt_inds = np.where((roidb['gt_classes'] > 0)
                             & (roidb['is_crowd'] == 0))[0]
    polys_gt = [roidb['segms'][i] for i in polys_gt_inds]
    boxes_from_polys = segm_utils.polys_to_boxes(polys_gt)
    fg_inds = np.where(blobs['labels_int32'] > 0)[0]
    roi_has_mask = blobs['labels_int32'].copy()
    roi_has_mask[roi_has_mask > 0] = 1

    # Define global bbox
    global_width = floor(roidb['width'] * scale_factor[1])
    global_height = floor(roidb['height'] * scale_factor[0])
    global_bbox = np.array((0, 0, global_width - 1, global_height - 1),
                           dtype=np.float32)

    if fg_inds.shape[0] > 0:
        # Class labels for the foreground rois
        mask_class_labels = blobs['labels_int32'][fg_inds]
        masks = blob_utils.zeros((fg_inds.shape[0], M**2), int32=True)
        global_masks = blob_utils.zeros((fg_inds.shape[0], G_M**2), int32=True)

        # Find overlap between all foreground rois and the bounding boxes
        # enclosing each segmentation
        rois_fg = sampled_boxes[fg_inds]
        overlaps_bbfg_bbpolys = box_utils.bbox_overlaps(
            rois_fg.astype(np.float32, copy=False),
            boxes_from_polys.astype(np.float32, copy=False))
        # Map from each fg rois to the index of the mask with highest overlap
        # (measured by bbox overlap)
        fg_polys_inds = np.argmax(overlaps_bbfg_bbpolys, axis=1)

        # add fg targets
        for i in range(rois_fg.shape[0]):
            fg_polys_ind = fg_polys_inds[i]
            poly_gt = polys_gt[fg_polys_ind]
            roi_fg = rois_fg[i]
            # Rasterize the portion of the polygon mask within the given fg roi
            # to an M x M binary image
            mask = segm_utils.polys_to_mask_wrt_box(poly_gt, roi_fg, M)
            mask = np.array(mask > 0, dtype=np.int32)  # Ensure it's binary
            masks[i, :] = np.reshape(mask, M**2)

            # Generate global mask
            global_mask = segm_utils.polys_to_mask_wrt_box(
                poly_gt, global_bbox, G_M)
            global_mask = np.array(global_mask > 0, dtype=np.int32)
            global_masks[i, :] = np.reshape(global_mask, G_M**2)

    else:  # If there are no fg masks (it does happen)
        # The network cannot handle empty blobs, so we must provide a mask
        # We simply take the first bg roi, given it an all -1's mask (ignore
        # label), and label it with class zero (bg).
        bg_inds = np.where(blobs['labels_int32'] == 0)[0]
        # rois_fg is actually one background roi, but that's ok because ...
        rois_fg = sampled_boxes[bg_inds[0]].reshape((1, -1))
        # We give it an -1's blob (ignore label)
        masks = -blob_utils.ones((1, M**2), int32=True)
        global_masks = -blob_utils.ones((1, G_M**2), int32=True)
        # We label it with class = 0 (background)
        mask_class_labels = blob_utils.zeros((1, ))
        # Mark that the first roi has a mask
        roi_has_mask[0] = 1

    if cfg.MRCNN.CLS_SPECIFIC_MASK:
        masks = _expand_to_class_specific_mask_targets(masks,
                                                       mask_class_labels)
        global_masks = _expand_to_class_specific_mask_targets(
            global_masks, mask_class_labels)

    # Scale rois_fg and format as (batch_idx, x1, y1, x2, y2)
    rois_fg *= im_scale
    repeated_batch_idx = batch_idx * blob_utils.ones((rois_fg.shape[0], 1))
    rois_fg = np.hstack((repeated_batch_idx, rois_fg))

    # Update blobs dict with Mask R-CNN blobs
    blobs['mask_rois'] = rois_fg
    blobs['roi_has_mask_int32'] = roi_has_mask
    blobs['masks_int32'] = masks
    blobs['global_masks_int32'] = global_masks
예제 #6
0
def add_boundary_blobs(blobs, sampled_boxes, roidb, im_scale, batch_idx):
    """Add Boundary specific blobs to the input blob dictionary."""
    # Prepare the boundary targets by associating one gt boundary to each training roi
    # that has a fg (non-bg) class label.
    M = cfg.BOUNDARY.RESOLUTION
    polys_gt_inds = np.where((roidb['gt_classes'] > 0)
                             & (roidb['is_crowd'] == 0))[0]
    polys_gt = [roidb['segms'][i] for i in polys_gt_inds]
    boxes_from_polys = segm_utils.polys_to_boxes(polys_gt)
    fg_inds = np.where(blobs['labels_int32'] > 0)[0]
    roi_has_boundary = blobs['labels_int32'].copy()
    roi_has_boundary[roi_has_boundary > 0] = 1

    if fg_inds.shape[0] > 0:
        # Class labels for the foreground rois
        boundary_class_labels = blobs['labels_int32'][fg_inds]
        boundarys = blob_utils.zeros((fg_inds.shape[0], M**2), int32=True)

        # Find overlap between all foreground rois and the bounding boxes
        # enclosing each segmentation
        rois_fg = sampled_boxes[fg_inds]
        overlaps_bbfg_bbpolys = box_utils.bbox_overlaps(
            rois_fg.astype(np.float32, copy=False),
            boxes_from_polys.astype(np.float32, copy=False))
        # Map from each fg rois to the index of the boundary with highest overlap
        # (measured by bbox overlap)
        fg_polys_inds = np.argmax(overlaps_bbfg_bbpolys, axis=1)

        # add fg targets
        for i in range(rois_fg.shape[0]):
            fg_polys_ind = fg_polys_inds[i]
            poly_gt = polys_gt[fg_polys_ind]
            roi_fg = rois_fg[i]
            # Rasterize the portion of the polygon boundary within the given fg roi
            # to an M x M binary image
            mask = segm_utils.polys_to_mask_wrt_box(poly_gt, roi_fg, M)
            mask = np.array(mask > 0, dtype=np.int32)  # Ensure it's binary
            boundary = get_boundary(mask)
            boundarys[i, :] = np.reshape(boundary, M**2)
    else:  # If there are no fg boundarys (it does happen)
        # The network cannot handle empty blobs, so we must provide a boundary
        # We simply take the first bg roi, given it an all -1's boundary (ignore
        # label), and label it with class zero (bg).
        bg_inds = np.where(blobs['labels_int32'] == 0)[0]
        # rois_fg is actually one background roi, but that's ok because ...
        rois_fg = sampled_boxes[bg_inds[0]].reshape((1, -1))
        # We give it an -1's blob (ignore label)
        boundarys = -blob_utils.ones((1, M**2), int32=True)
        # We label it with class = 0 (background)
        boundary_class_labels = blob_utils.zeros((1, ))
        # Mark that the first roi has a boundary
        roi_has_boundary[0] = 1

    if cfg.BOUNDARY.CLS_SPECIFIC_MASK:
        boundarys = _expand_to_class_specific_boundary_targets(
            boundarys, boundary_class_labels)

    # Scale rois_fg and format as (batch_idx, x1, y1, x2, y2)
    rois_fg *= im_scale
    repeated_batch_idx = batch_idx * blob_utils.ones((rois_fg.shape[0], 1))
    rois_fg = np.hstack((repeated_batch_idx, rois_fg))

    # Update blobs dict with Mask R-CNN blobs
    blobs['boundary_rois'] = rois_fg
    blobs['roi_has_boundary_int32'] = roi_has_boundary
    blobs['boundary_int32'] = boundarys