def network(self): model = get_model(self.config) self.input_data = model.create_feeds() self.metrics = model.net(self.input_data) self.inference_target_var = model.inference_target_var logger.info("cpu_num: {}".format(os.getenv("CPU_NUM"))) model.create_optimizer(get_strategy(self.config))
def init_network(self): model = get_model(self.config) self.input_data = model.create_feeds() self.metrics = model.net(self.input_data) self.inference_feed_vars = model.inference_feed_vars self.inference_target_var = model.inference_target_var if hasattr(model, "all_vars"): with open("all_vars.txt", 'w+') as f: f.write('\n'.join([var.name for var in model.all_vars])) if config.get("runner.need_prune", False): # DSSM prune net self.inference_feed_vars = self.model.prune_feed_vars self.inference_target_var = self.model.prune_target_var if config.get("runner.need_train_dump", False): self.train_dump_fields = model.train_dump_fields if hasattr( self.model, "train_dump_fields") else [] self.train_dump_params = model.train_dump_params if hasattr( self.model, "train_dump_params") else [] if config.get("runner.need_infer_dump", False): self.infer_dump_fields = model.infer_dump_fields if hasattr( model, "infer_dump_fields") else [] self.config['stat_var_names'] = model.thread_stat_var_names self.metric_list = model.metric_list self.metric_types = model.metric_types logger.info("cpu_num: {}".format(os.getenv("CPU_NUM"))) model.create_optimizer(get_strategy(self.config))
def network(self): self.model = get_model(self.config) self.input_data = self.model.create_feeds() self.metrics = self.model.net(self.input_data) logger.info("cpu_num: {}".format(os.getenv("CPU_NUM"))) thread_stat_var_names = [ self.model.auc_stat_list[2].name, self.model.auc_stat_list[3].name ] thread_stat_var_names += [i.name for i in self.model.metric_list] thread_stat_var_names = list(set(thread_stat_var_names)) self.config['stat_var_names'] = thread_stat_var_names self.metric_list = list(self.model.auc_stat_list) + list( self.model.metric_list) self.metric_types = ["int64"] * len(self.model.auc_stat_list) + [ "float32" ] * len(self.model.metric_list) self.model.create_optimizer(get_strategy(self.config))