예제 #1
0
def get_transform(point_cloud, is_training, bn_decay=None, K=3):
    """ Transform Net, input is BxNx3 gray image
        Return:
            Transformation matrix of size 3xK """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value

    input_image = tf.expand_dims(point_cloud, -1)
    net = tf_util.conv2d(input_image, 64, [1, 3], padding='VALID', stride=[1, 1],
                         bn=True, is_training=is_training, scope='tconv1', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 128, [1, 1], padding='VALID', stride=[1, 1],
                         bn=True, is_training=is_training, scope='tconv3', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 1024, [1, 1], padding='VALID', stride=[1, 1],
                         bn=True, is_training=is_training, scope='tconv4', bn_decay=bn_decay)
    net = tf_util.max_pool2d(net, [num_point, 1], padding='VALID', scope='tmaxpool')

    net = tf.reshape(net, [batch_size, -1])
    net = tf_util.fully_connected(net, 128, bn=True, is_training=is_training, scope='tfc1', bn_decay=bn_decay)
    net = tf_util.fully_connected(net, 128, bn=True, is_training=is_training, scope='tfc2', bn_decay=bn_decay)

    with tf.variable_scope('transform_XYZ') as sc:
        assert (K == 3)
        weights = tf.get_variable('weights', [128, 3 * K], initializer=tf.constant_initializer(0.0), dtype=tf.float32)
        biases = tf.get_variable('biases', [3 * K], initializer=tf.constant_initializer(0.0),
                                 dtype=tf.float32) + tf.constant([1, 0, 0, 0, 1, 0, 0, 0, 1], dtype=tf.float32)
        transform = tf.matmul(net, weights)
        transform = tf.nn.bias_add(transform, biases)

    # transform = tf_util.fully_connected(net, 3*K, activation_fn=None, scope='tfc3')
    transform = tf.reshape(transform, [batch_size, 3, K])
    return transform
예제 #2
0
def get_model(point_cloud, is_training, bn_decay=None):
    """
        Classification PointNetwork
        :param point_cloud:  point cloud BxNx3
        :param is_training: training flag
        :param bn_decay: decay flag
        :return: output model Bx40
    """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}
    input_image = tf.expand_dims(point_cloud, -1)
    # Point functions (MPL implemented as conv2d)
    net = tf_util.conv2d(input_image, 64, [1, 3], padding='VALID', stride=[1, 1], bn=True, is_training=is_training,
                         scope='conv1', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 64, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training,
                         scope='conv2', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 64, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training,
                         scope='conv3', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 128, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training,
                         scope='conv4', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 1024, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training,
                         scope='conv5', bn_decay=bn_decay)
    # Symetric function: Max Pooling
    net = tf_util.max_pool2d(net, [num_point, 1], padding='VALID', scope='maxpool')
    # MLP on global point cloud vector
    net = tf.reshape(net, [batch_size, -1])
    net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
    net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='fc2', bn_decay=bn_decay)
    net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training, scope='dp1')
    net = tf_util.fully_connected(net, 40, activation_fn=None, scope='fc3')
    return net, end_points
예제 #3
0
	def create_encoder(self, inputs):
		input_image = tf.expand_dims(inputs, -1)
		# Conv
		net = conv2d(input_image, 64, [1, 9], padding='VALID', stride=[1, 1],
		             bn=True, is_training=self.is_training, scope='conv1', bn_decay=self.bn_decay)
		net = conv2d(net, 64, [1, 1], padding='VALID', stride=[1, 1],
		             bn=True, is_training=self.is_training, scope='conv2', bn_decay=self.bn_decay)
		net = conv2d(net, 64, [1, 1], padding='VALID', stride=[1, 1],
		             bn=True, is_training=self.is_training, scope='conv3', bn_decay=self.bn_decay)
		net = conv2d(net, 128, [1, 1], padding='VALID', stride=[1, 1],
		             bn=True, is_training=self.is_training, scope='conv4', bn_decay=self.bn_decay)
		points_feat1 = conv2d(net, 1024, [1, 1], padding='VALID', stride=[1, 1],
		                      bn=True, is_training=self.is_training, scope='conv5', bn_decay=self.bn_decay)
		
		# MaxPooling
		pc_feat1 = max_pool2d(points_feat1, [NUM_POINT, 1], padding='VALID', scope='maxpool')
		
		# Fully Connected Layers
		pc_feat1 = tf.reshape(pc_feat1, [BATCH_SIZE, -1])
		pc_feat1 = fully_connected(pc_feat1, 256, bn=True, is_training=self.is_training,
		                           scope='fc1', bn_decay=self.bn_decay)
		pc_feat1 = fully_connected(pc_feat1, 128, bn=True, is_training=self.is_training,
		                           scope='fc2', bn_decay=self.bn_decay)
		
		# Concat
		pc_feat1_expand = tf.tile(tf.reshape(pc_feat1, [BATCH_SIZE, 1, 1, -1]), [1, NUM_POINT, 1, 1])
		points_feat1_concat = tf.concat(axis=3, values=[points_feat1, pc_feat1_expand])
		
		return points_feat1_concat
예제 #4
0
def get_transform_K(inputs, is_training, bn_decay=None, K=3):
    """ Transform Net, input is BxNx1xK gray image
        Return:
            Transformation matrix of size KxK """
    batch_size = inputs.get_shape()[0].value
    num_point = inputs.get_shape()[1].value

    net = tf_util.conv2d(inputs, 256, [1, 1], padding='VALID', stride=[1, 1],
                         bn=True, is_training=is_training, scope='tconv1', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 1024, [1, 1], padding='VALID', stride=[1, 1],
                         bn=True, is_training=is_training, scope='tconv2', bn_decay=bn_decay)
    net = tf_util.max_pool2d(net, [num_point, 1], padding='VALID', scope='tmaxpool')

    net = tf.reshape(net, [batch_size, -1])
    net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training, scope='tfc1', bn_decay=bn_decay)
    net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='tfc2', bn_decay=bn_decay)

    with tf.variable_scope('transform_feat') as sc:
        weights = tf.get_variable('weights', [256, K * K], initializer=tf.constant_initializer(0.0), dtype=tf.float32)
        biases = tf.get_variable('biases', [K * K], initializer=tf.constant_initializer(0.0),
                                 dtype=tf.float32) + tf.constant(np.eye(K).flatten(), dtype=tf.float32)
        transform = tf.matmul(net, weights)
        transform = tf.nn.bias_add(transform, biases)

    # transform = tf_util.fully_connected(net, 3*K, activation_fn=None, scope='tfc3')
    transform = tf.reshape(transform, [batch_size, K, K])
    return transform
예제 #5
0
def VLAD_part(input_tensor, FLAGS, is_training, bn_decay, layer_name=None):

    with tf.variable_scope('VLAD_layer'):
        batch_size = input_tensor.get_shape()[0].value
        num_point = input_tensor.get_shape()[1].value
        D = input_tensor.get_shape()[-1].value

        reshape = tf.reshape(input_tensor, shape=[batch_size, num_point, D])
        conv_norm = tf.nn.l2_normalize(reshape, dim=2)
        descriptor = tf.expand_dims(conv_norm, axis=-1, name='expanddim')
        conv = conv2d(descriptor,
                      FLAGS.centers, [1, D],
                      padding='VALID',
                      stride=[1, 1],
                      bn=True,
                      is_training=is_training,
                      scope='assignment',
                      bn_decay=bn_decay,
                      activation_fn=None)
        a = tf.nn.softmax(conv)

        top_k = FLAGS.topk
        one_hot = tf.nn.top_k(a, top_k)
        fuse = Top_K(one_hot, top_k, batch_size, num_point)

        Center = _variable_on_cpu(
            name=layer_name + '_centers',
            shape=[D, FLAGS.centers],
            initializer=tf.contrib.layers.xavier_initializer())

        diff = tf.expand_dims(reshape, axis=-1) - Center
        diff = diff * a
        diff = tf.transpose(diff, perm=[0, 1, 3, 2])
        diff = tf.gather_nd(diff, fuse)

        net = conv2d(diff,
                     128, [1, 1],
                     padding='VALID',
                     stride=[1, 1],
                     bn=True,
                     is_training=is_training,
                     scope='vlad_conv1',
                     bn_decay=bn_decay)
        net = conv2d(net,
                     256, [1, 1],
                     padding='VALID',
                     stride=[1, 1],
                     bn=True,
                     is_training=is_training,
                     scope='vlad_conv2',
                     bn_decay=bn_decay)

        pool1 = tf.nn.max_pool(net,
                               ksize=[1, 1, top_k, 1],
                               strides=[1, 1, 2, 1],
                               padding='VALID')
        concat = tf.concat([input_tensor, pool1], axis=-1)

        return concat, one_hot[1]
예제 #6
0
	def create_decoder(self):
		net = conv2d(self.cat_feats, 512, [1, 1], padding='VALID', stride=[1, 1],
		             bn=True, is_training=self.is_training, scope='conv6')
		net = conv2d(net, 256, [1, 1], padding='VALID', stride=[1, 1],
		             bn=True, is_training=self.is_training, scope='conv7')
		net = dropout(net, keep_prob=0.7, is_training=self.is_training, scope='dp1')
		net = conv2d(net, 13, [1, 1], padding='VALID', stride=[1, 1],
		             activation_fn=None, scope='conv8')
		net = tf.squeeze(net, [2])
		return net
예제 #7
0
def get_model(point_cloud, is_training, bn_decay=None):
    """ Classification PointNet, input is BxNx3, output Bx40 """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}

    with tf.variable_scope('transform_net1') as sc:
        transform = input_transform_net(point_cloud, is_training, bn_decay, K=3)
    point_cloud_transformed = tf.matmul(point_cloud, transform)
    input_image = tf.expand_dims(point_cloud_transformed, -1)

    net = tf_util.conv2d(input_image, 64, [1,3],
                         padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training,
                         scope='conv1', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 64, [1,1],
                         padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training,
                         scope='conv2', bn_decay=bn_decay)

    with tf.variable_scope('transform_net2') as sc:
        transform = feature_transform_net(net, is_training, bn_decay, K=64)
    end_points['transform'] = transform
    net_transformed = tf.matmul(tf.squeeze(net, axis=[2]), transform)
    net_transformed = tf.expand_dims(net_transformed, [2])

    net = tf_util.conv2d(net_transformed, 64, [1,1],
                         padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training,
                         scope='conv3', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 128, [1,1],
                         padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training,
                         scope='conv4', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 1024, [1,1],
                         padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training,
                         scope='conv5', bn_decay=bn_decay)

    # Symmetric function: max pooling
    net = tf_util.max_pool2d(net, [num_point,1],
                             padding='VALID', scope='maxpool')

    net = tf.reshape(net, [batch_size, -1])
    net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training,
                                  scope='fc1', bn_decay=bn_decay)
    net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training,
                          scope='dp1')
    net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training,
                                  scope='fc2', bn_decay=bn_decay)
    net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training,
                          scope='dp2')
    net = tf_util.fully_connected(net, 40, activation_fn=None, scope='fc3')

    return net, end_points
예제 #8
0
def input_transform_net(point_cloud, is_training, bn_decay=None, K=3):
	""" Input (XYZ) Transform Net, input is BxNx3 gray image
		Return:
			Transformation matrix of size 3xK """
	# print('the input shape for t-net:', point_cloud.get_shape())
	batch_size = point_cloud.get_shape()[0].value
	num_point = point_cloud.get_shape()[1].value
	# point_cloud -> Tensor of (batch size, number of points, 3d coordinates)
	
	input_image = tf.expand_dims(point_cloud, -1)
	# point_cloud -> (batch size, number of points, 3d coordinates, 1)
	# batch size * height * width * channel
	
	'''tf_util.conv2d(inputs, num_output_channels, kernel_size, scope, stride=[1, 1], padding='SAME',
						use_xavier=True, stddev=1e-3, weight_decay=0.0, activation_fn=tf.nn.relu,
						bn=False, bn_decay=None(default is set to 0.9), is_training=None)'''
	net = tf_util.conv2d(input_image, 64, [1, 3],
	                     padding='VALID', stride=[1, 1],
	                     bn=True, is_training=is_training,
	                     scope='tconv1', bn_decay=bn_decay)
	net = tf_util.conv2d(net, 128, [1, 1],
	                     padding='VALID', stride=[1, 1],
	                     bn=True, is_training=is_training,
	                     scope='tconv2', bn_decay=bn_decay)
	net = tf_util.conv2d(net, 1024, [1, 1],
	                     padding='VALID', stride=[1, 1],
	                     bn=True, is_training=is_training,
	                     scope='tconv3', bn_decay=bn_decay)
	
	# net = mlp_conv(input_image, [64, 128, 1024])
	net = tf_util.max_pool2d(net, [num_point, 1],
	                         padding='VALID', scope='tmaxpool')
	'''(default stride: (2, 2))'''
	# net = tf.reduce_max(net, axis=1, keep_dims=True, name='tmaxpool')
	
	net = tf.reshape(net, [batch_size, -1])
	net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training,
	                              scope='tfc1', bn_decay=bn_decay)
	net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training,
	                              scope='tfc2', bn_decay=bn_decay)
	
	with tf.variable_scope('transform_XYZ') as sc:
		assert(K == 3)
		weights = tf.get_variable('weights', [256, 3*K],
		                          initializer=tf.constant_initializer(0.0),
		                          dtype=tf.float32)
		biases = tf.get_variable('biases', [3*K],
		                         initializer=tf.constant_initializer(0.0),
		                         dtype=tf.float32)
		biases += tf.constant([1, 0, 0, 0, 1, 0, 0, 0, 1], dtype=tf.float32)
		transform = tf.matmul(net, weights)
		transform = tf.nn.bias_add(transform, biases)
	
	transform = tf.reshape(transform, [batch_size, 3, K])
	return transform
예제 #9
0
파일: models.py 프로젝트: nschor/CompoNet
def ae_encoder(batch_size,
               num_point,
               point_dim,
               input_image,
               is_training,
               bn_decay=None,
               embedding_dim=128):
    net = tf_util.conv2d(input_image,
                         64, [1, point_dim],
                         padding='VALID',
                         stride=[1, 1],
                         bn=True,
                         is_training=is_training,
                         scope='conv1',
                         bn_decay=bn_decay)
    net = tf_util.conv2d(net,
                         64, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         bn=True,
                         is_training=is_training,
                         scope='conv2',
                         bn_decay=bn_decay)
    net = tf_util.conv2d(net,
                         64, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         bn=True,
                         is_training=is_training,
                         scope='conv3',
                         bn_decay=bn_decay)
    net = tf_util.conv2d(net,
                         128, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         bn=True,
                         is_training=is_training,
                         scope='conv4',
                         bn_decay=bn_decay)
    net = tf_util.conv2d(net,
                         embedding_dim, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         bn=True,
                         is_training=is_training,
                         scope='conv5',
                         bn_decay=bn_decay)
    global_feat = tf_util.max_pool2d(net, [num_point, 1],
                                     padding='VALID',
                                     scope='maxpool')
    net = tf.reshape(global_feat, [batch_size, -1])
    end_points = {'embedding': net}

    return net, end_points
예제 #10
0
def input_transform_net_dgcnn(edge_feature, is_training, bn_decay=None, K=3):
	""" Input (XYZ) Transform Net, input is BxNx3 gray image
	Return:
		Transformation matrix of size 3xK """
	
	batch_size = edge_feature.get_shape()[0].value
	num_point = edge_feature.get_shape()[1].value
	
	# input_image = tf.expand_dims(point_cloud, -1)
	net = tf_util.conv2d(edge_feature, 64, [1, 1],
	                     padding='VALID', stride=[1, 1],
	                     bn=True, is_training=is_training,
	                     scope='tconv1', bn_decay=bn_decay)
	net = tf_util.conv2d(net, 128, [1, 1],
	                     padding='VALID', stride=[1, 1],
	                     bn=True, is_training=is_training,
	                     scope='tconv2', bn_decay=bn_decay)
	
	net = tf.reduce_max(net, axis=-2, keep_dims=True)
	
	net = tf_util.conv2d(net, 1024, [1, 1],
	                     padding='VALID', stride=[1, 1],
	                     bn=True, is_training=is_training,
	                     scope='tconv3', bn_decay=bn_decay)
	net = tf_util.max_pool2d(net, [num_point, 1],
	                         padding='VALID', scope='tmaxpool')
	
	net = tf.reshape(net, [batch_size, -1])
	net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training,
	                              scope='tfc1', bn_decay=bn_decay)
	net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training,
	                              scope='tfc2', bn_decay=bn_decay)
	
	with tf.variable_scope('transform_XYZ') as sc:
		# assert(K==3)
		with tf.device('/cpu:0'):
			weights = tf.get_variable('weights', [256, K * K],
			                          initializer=tf.constant_initializer(0.0),
			                          dtype=tf.float32)
			biases = tf.get_variable('biases', [K * K],
			                         initializer=tf.constant_initializer(0.0),
			                         dtype=tf.float32)
		biases += tf.constant(np.eye(K).flatten(), dtype=tf.float32)
		transform = tf.matmul(net, weights)
		transform = tf.nn.bias_add(transform, biases)
	
	transform = tf.reshape(transform, [batch_size, K, K])
	return transform
예제 #11
0
def pointnet_fp_module(xyz1, xyz2, points1, points2, mlp, is_training, bn_decay, scope, bn=True):
    ''' PointNet Feature Propogation (FP) Module
        Input:
            xyz1: (batch_size, ndataset1, 3) TF tensor
            xyz2: (batch_size, ndataset2, 3) TF tensor, sparser than xyz1
            points1: (batch_size, ndataset1, nchannel1) TF tensor
            points2: (batch_size, ndataset2, nchannel2) TF tensor
            mlp: list of int32 -- output size for MLP on each point
        Return:
            new_points: (batch_size, ndataset1, mlp[-1]) TF tensor
    '''
    with tf.variable_scope(scope) as sc:
        dist, idx = three_nn(xyz1, xyz2)
        dist = tf.maximum(dist, 1e-10)
        norm = tf.reduce_sum((1.0 / dist), axis=2, keepdims=True)
        norm = tf.tile(norm, [1, 1, 3])
        weight = (1.0 / dist) / norm
        interpolated_points = three_interpolate(points2, idx, weight)

        if points1 is not None:
            new_points1 = tf.concat(axis=2, values=[interpolated_points, points1])  # B,ndataset1,nchannel1+nchannel2
        else:
            new_points1 = interpolated_points
        new_points1 = tf.expand_dims(new_points1, 2)
        for i, num_out_channel in enumerate(mlp):
            new_points1 = tf_util.conv2d(new_points1, num_out_channel, [1, 1],
                                         padding='VALID', stride=[1, 1],
                                         bn=bn, is_training=is_training,
                                         scope='conv_%d' % (i), bn_decay=bn_decay)
        new_points1 = tf.squeeze(new_points1, [2])  # B,ndataset1,mlp[-1]
        return new_points1
예제 #12
0
def pointnet_fp_module(xyz1,
                       xyz2,
                       points1,
                       points2,
                       mlp,
                       is_training,
                       bn_decay,
                       scope,
                       bn=True):
    with tf.variable_scope(scope) as sc:
        dist, idx = three_nn(xyz1, xyz2)
        dist = tf.maximum(dist, 1e-10)
        norm = tf.reduce_sum((1.0 / dist), axis=2, keep_dims=True)
        norm = tf.tile(norm, [1, 1, 3])
        weight = (1.0 / dist) / norm
        interpolated_points = three_interpolate(points2, idx, weight)

        if points1 is not None:
            new_points1 = tf.concat(
                axis=2, values=[interpolated_points,
                                points1])  # B,ndataset1,nchannel1+nchannel2
        else:
            new_points1 = interpolated_points
        new_points1 = tf.expand_dims(new_points1, 2)
        for i, num_out_channel in enumerate(mlp):
            new_points1 = tf_util.conv2d(new_points1,
                                         num_out_channel, [1, 1],
                                         padding='VALID',
                                         stride=[1, 1],
                                         bn=bn,
                                         is_training=is_training,
                                         scope='conv%d' % (i),
                                         bn_decay=bn_decay)
        new_points1 = tf.squeeze(new_points1, [2])  # B,ndataset1,mlp[-1]
        return new_points1
예제 #13
0
def get_model(point_cloud, is_training, bn_decay=None):
    """
        Classification PointNetwork
        :param point_cloud: input pointcloud BxNx3
        :param is_training: training flag
        :param bn_decay: decay flag
        :return: output model BxNx50
    """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}
    with tf.variable_scope('transform_net1') as sc:
        transform = input_transform_net(point_cloud, is_training, bn_decay, K=3)
    point_cloud_transformed = tf.matmul(point_cloud, transform)
    input_image = tf.expand_dims(point_cloud_transformed, -1)
    net = tf_util.conv2d(input_image, 64, [1, 3], padding='VALID', stride=[1, 1], bn=True, is_training=is_training,
                         scope='conv1', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 64, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training,
                         scope='conv2', bn_decay=bn_decay)
    with tf.variable_scope('transform_net2') as sc:
        transform = feature_transform_net(net, is_training, bn_decay, K=64)
    end_points['transform'] = transform
    net_transformed = tf.matmul(tf.squeeze(net, axis=[2]), transform)
    point_feat = tf.expand_dims(net_transformed, [2])
    print(point_feat)
    net = tf_util.conv2d(point_feat, 64, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training,
                         scope='conv3', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 128, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training,
                         scope='conv4', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 1024, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training,
                         scope='conv5', bn_decay=bn_decay)
    global_feat = tf_util.max_pool2d(net, [num_point, 1], padding='VALID', scope='maxpool')
    print(global_feat)
    global_feat_expand = tf.tile(global_feat, [1, num_point, 1, 1])
    concat_feat = tf.concat(3, [point_feat, global_feat_expand])
    print(concat_feat)
    net = tf_util.conv2d(concat_feat, 512, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training,
                         scope='conv6', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 256, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training,
                         scope='conv7', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 128, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training,
                         scope='conv8', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 128, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training,
                         scope='conv9', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 50, [1, 1], padding='VALID', stride=[1, 1], activation_fn=None, scope='conv10')
    net = tf.squeeze(net, [2])  # BxNxC
    return net, end_points
예제 #14
0
def align_channel_network(info, mlp_list, bn, is_training, bn_decay, scope):
    with tf.variable_scope(scope) as sc:
        for i, num_out_channel in enumerate(mlp_list):
            info = tf_util.conv2d(info, 
                   num_out_channel, 
                   [1, 1], 
                   padding='VALID', 
                   bn=bn, 
                   is_training=is_training, 
                   scope='conv%d'%i, 
                   bn_decay=bn_decay)
    return info
예제 #15
0
def local_op(input, out_dim, scope, bn_decay, is_training):
    """

    :param input: batch_size, num_point, num_sample, num_dim
    :param out_dim:
    :return:
    """

    x = tf_util.conv2d(input, out_dim, [1, 1],
                       padding='VALID', stride=[1, 1], bn=True,
                       is_biases=False, is_training=is_training,
                       scope=scope + 'conv0', bn_decay=bn_decay)
    x = tf_util.conv2d(x, out_dim, [1, 1],
                       padding='VALID', stride=[1, 1], bn=True,
                       is_biases=False, is_training=is_training,
                       scope=scope + 'conv1', bn_decay=bn_decay)

    # replace the tf_util.max_pool2d()
    x = tf.reduce_max(x, axis=2, keepdims=False)

    return x
예제 #16
0
def get_model(point_cloud, is_training, bn_decay=None):
    """ ConvNet baseline, input is BxNx3 gray image """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value

    input_image = tf.expand_dims(point_cloud, -1)
    # CONV
    net = tf_util.conv2d(input_image, 64, [1,9], padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training, scope='conv1', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 64, [1,1], padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training, scope='conv2', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 64, [1,1], padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training, scope='conv3', bn_decay=bn_decay)
    net = tf_util.conv2d(net, 128, [1,1], padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training, scope='conv4', bn_decay=bn_decay)
    points_feat1 = tf_util.conv2d(net, 1024, [1,1], padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training, scope='conv5', bn_decay=bn_decay)
    # MAX
    pc_feat1 = tf_util.max_pool2d(points_feat1, [num_point,1], padding='VALID', scope='maxpool1')
    # FC
    pc_feat1 = tf.reshape(pc_feat1, [batch_size, -1])
    pc_feat1 = tf_util.fully_connected(pc_feat1, 256, bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
    pc_feat1 = tf_util.fully_connected(pc_feat1, 128, bn=True, is_training=is_training, scope='fc2', bn_decay=bn_decay)
    print(pc_feat1)
   
    # CONCAT 
    pc_feat1_expand = tf.tile(tf.reshape(pc_feat1, [batch_size, 1, 1, -1]), [1, num_point, 1, 1])
    print(points_feat1)
    print(pc_feat1_expand)
    points_feat1_concat = tf.concat(axis=3, values=[points_feat1, pc_feat1_expand])
    print(points_feat1_concat)
    
    # CONV 
    net = tf_util.conv2d(points_feat1_concat, 512, [1,1], padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training, scope='conv6')
    net = tf_util.conv2d(net, 256, [1,1], padding='VALID', stride=[1,1],
                         bn=True, is_training=is_training, scope='conv7')
    net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training, scope='dp1')
    net = tf_util.conv2d(net, 13, [1,1], padding='VALID', stride=[1,1],
                         activation_fn=None, scope='conv8')
    net = tf.squeeze(net, [2])

    return net
예제 #17
0
def pointnet_sa_module_msg(xyz, points, npoint, radius_list, nsample_list, mlp_list, is_training, bn_decay, scope,
                           bn=True, use_xyz=True, use_nchw=False):
    ''' PointNet Set Abstraction (SA) module with Multi-Scale Grouping (MSG)
        Input:
            xyz: (batch_size, ndataset, 3) TF tensor
            points: (batch_size, ndataset, channel) TF tensor
            npoint: int32 -- #points sampled in farthest point sampling
            radius: list of float32 -- search radius in local region
            nsample: list of int32 -- how many points in each local region
            mlp: list of list of int32 -- output size for MLP on each point
            use_xyz: bool, if True concat XYZ with local point features, otherwise just use point features
            use_nchw: bool, if True, use NCHW data format for conv2d, which is usually faster than NHWC format
        Return:
            new_xyz: (batch_size, npoint, 3) TF tensor
            new_points: (batch_size, npoint, \sum_k{mlp[k][-1]}) TF tensor
    '''
    data_format = 'NCHW' if use_nchw else 'NHWC'
    with tf.variable_scope(scope) as sc:
        new_xyz = gather_point(xyz, farthest_point_sample(npoint, xyz))
        new_points_list = []
        for i in range(len(radius_list)):
            radius = radius_list[i]
            nsample = nsample_list[i]
            idx, pts_cnt = query_ball_point(radius, nsample, xyz, new_xyz)
            grouped_xyz = group_point(xyz, idx)
            grouped_xyz -= tf.tile(tf.expand_dims(new_xyz, 2), [1, 1, nsample, 1])
            if points is not None:
                grouped_points = group_point(points, idx)
                if use_xyz:
                    grouped_points = tf.concat([grouped_points, grouped_xyz], axis=-1)
            else:
                grouped_points = grouped_xyz
            if use_nchw: grouped_points = tf.transpose(grouped_points, [0, 3, 1, 2])
            for j, num_out_channel in enumerate(mlp_list[i]):
                grouped_points = tf_util.conv2d(grouped_points, num_out_channel, [1, 1],
                                                padding='VALID', stride=[1, 1], bn=bn, is_training=is_training,
                                                scope='conv%d_%d' % (i, j), bn_decay=bn_decay)
            if use_nchw: grouped_points = tf.transpose(grouped_points, [0, 2, 3, 1])
            new_points = tf.reduce_max(grouped_points, axis=[2])
            new_points_list.append(new_points)
        new_points_concat = tf.concat(new_points_list, axis=-1)
        return new_xyz, new_points_concat
예제 #18
0
파일: dgcnn_cd.py 프로젝트: lt6253090/OcCo
    def create_encoder(self, point_cloud, npts):

        point_cloud = tf.reshape(point_cloud, (BATCH_SIZE, NUM_POINT, 3))

        adj_matrix = tf_util.pairwise_distance(point_cloud)
        nn_idx = tf_util.knn(adj_matrix, k=self.knn)
        edge_feature = tf_util.get_edge_feature(point_cloud,
                                                nn_idx=nn_idx,
                                                k=self.knn)

        with tf.variable_scope('transform_net1') as sc:
            transform = input_transform_net_dgcnn(edge_feature,
                                                  self.is_training,
                                                  self.bn_decay,
                                                  K=3)

        point_cloud_transformed = tf.matmul(point_cloud, transform)
        adj_matrix = tf_util.pairwise_distance(point_cloud_transformed)
        nn_idx = tf_util.knn(adj_matrix, k=self.knn)
        edge_feature = tf_util.get_edge_feature(point_cloud_transformed,
                                                nn_idx=nn_idx,
                                                k=self.knn)

        net = tf_util.conv2d(edge_feature,
                             64, [1, 1],
                             padding='VALID',
                             stride=[1, 1],
                             bn=True,
                             is_training=self.is_training,
                             scope='dgcnn1',
                             bn_decay=self.bn_decay)
        net = tf.reduce_max(net, axis=-2, keep_dims=True)
        net1 = net

        adj_matrix = tf_util.pairwise_distance(net)
        nn_idx = tf_util.knn(adj_matrix, k=self.knn)
        edge_feature = tf_util.get_edge_feature(net, nn_idx=nn_idx, k=self.knn)

        net = tf_util.conv2d(edge_feature,
                             64, [1, 1],
                             padding='VALID',
                             stride=[1, 1],
                             bn=True,
                             is_training=self.is_training,
                             scope='dgcnn2',
                             bn_decay=self.bn_decay)
        net = tf.reduce_max(net, axis=-2, keep_dims=True)
        net2 = net

        adj_matrix = tf_util.pairwise_distance(net)
        nn_idx = tf_util.knn(adj_matrix, k=self.knn)
        edge_feature = tf_util.get_edge_feature(net, nn_idx=nn_idx, k=self.knn)

        net = tf_util.conv2d(edge_feature,
                             64, [1, 1],
                             padding='VALID',
                             stride=[1, 1],
                             bn=True,
                             is_training=self.is_training,
                             scope='dgcnn3',
                             bn_decay=self.bn_decay)
        net = tf.reduce_max(net, axis=-2, keep_dims=True)
        net3 = net

        adj_matrix = tf_util.pairwise_distance(net)
        nn_idx = tf_util.knn(adj_matrix, k=self.knn)
        edge_feature = tf_util.get_edge_feature(net, nn_idx=nn_idx, k=self.knn)

        net = tf_util.conv2d(edge_feature,
                             128, [1, 1],
                             padding='VALID',
                             stride=[1, 1],
                             bn=True,
                             is_training=self.is_training,
                             scope='dgcnn4',
                             bn_decay=self.bn_decay)
        net = tf.reduce_max(net, axis=-2, keep_dims=True)
        net4 = net

        net = tf_util.conv2d(tf.concat([net1, net2, net3, net4], axis=-1),
                             1024, [1, 1],
                             padding='VALID',
                             stride=[1, 1],
                             bn=True,
                             is_training=self.is_training,
                             scope='agg',
                             bn_decay=self.bn_decay)

        net = tf.reduce_max(net, axis=1, keep_dims=True)

        features = tf.reshape(net, [BATCH_SIZE, -1])
        return features
예제 #19
0
def pointnet_sa_module(xyz, points, npoint, radius, nsample, mlp, mlp2, group_all, is_training, bn_decay, scope,
                       bn=True, pooling='max', knn=False, use_xyz=True, use_nchw=False):
    ''' PointNet Set Abstraction (SA) Module
        Input:
            xyz: (batch_size, ndataset, 3) TF tensor
            points: (batch_size, ndataset, channel) TF tensor
            npoint: int32 -- #points sampled in farthest point sampling
            radius: float32 -- search radius in local region
            nsample: int32 -- how many points in each local region
            mlp: list of int32 -- output size for MLP on each point
            mlp2: list of int32 -- output size for MLP on each region
            group_all: bool -- group all points into one PC if set true, OVERRIDE
                npoint, radius and nsample settings
            use_xyz: bool, if True concat XYZ with local point features, otherwise just use point features
            use_nchw: bool, if True, use NCHW data format for conv2d, which is usually faster than NHWC format
        Return:
            new_xyz: (batch_size, npoint, 3) TF tensor
            new_points: (batch_size, npoint, mlp[-1] or mlp2[-1]) TF tensor
            idx: (batch_size, npoint, nsample) int32 -- indices for local regions
    '''
    data_format = 'NCHW' if use_nchw else 'NHWC'
    with tf.variable_scope(scope) as sc:
        # Sample and Grouping
        if group_all:
            nsample = xyz.get_shape()[1].value
            new_xyz, new_points, idx, grouped_xyz = sample_and_group_all(xyz, points, use_xyz)
        else:
            new_xyz, new_points, idx, grouped_xyz = sample_and_group(npoint, radius, nsample, xyz, points, knn, use_xyz)

        # Point Feature Embedding
        if use_nchw: new_points = tf.transpose(new_points, [0, 3, 1, 2])
        for i, num_out_channel in enumerate(mlp):
            new_points = tf_util.conv2d(new_points, num_out_channel, [1, 1],
                                        padding='VALID', stride=[1, 1],
                                        bn=bn, is_training=is_training,
                                        scope='conv%d' % (i), bn_decay=bn_decay,
                                        data_format=data_format)
        if use_nchw: new_points = tf.transpose(new_points, [0, 2, 3, 1])

        # Pooling in Local Regions
        if pooling == 'max':
            new_points = tf.reduce_max(new_points, axis=[2], keepdims=True, name='maxpool')
        elif pooling == 'avg':
            new_points = tf.reduce_mean(new_points, axis=[2], keepdims=True, name='avgpool')
        elif pooling == 'weighted_avg':
            with tf.variable_scope('weighted_avg'):
                dists = tf.norm(grouped_xyz, axis=-1, ord=2, keepdims=True)
                exp_dists = tf.exp(-dists * 5)
                weights = exp_dists / tf.reduce_sum(exp_dists, axis=2,
                                                    keepdims=True)  # (batch_size, npoint, nsample, 1)
                new_points *= weights  # (batch_size, npoint, nsample, mlp[-1])
                new_points = tf.reduce_sum(new_points, axis=2, keepdims=True)
        elif pooling == 'max_and_avg':
            max_points = tf.reduce_max(new_points, axis=[2], keepdims=True, name='maxpool')
            avg_points = tf.reduce_mean(new_points, axis=[2], keepdims=True, name='avgpool')
            new_points = tf.concat([avg_points, max_points], axis=-1)

        # [Optional] Further Processing
        if mlp2 is not None:
            if use_nchw: new_points = tf.transpose(new_points, [0, 3, 1, 2])
            for i, num_out_channel in enumerate(mlp2):
                new_points = tf_util.conv2d(new_points, num_out_channel, [1, 1],
                                            padding='VALID', stride=[1, 1],
                                            bn=bn, is_training=is_training,
                                            scope='conv_post_%d' % (i), bn_decay=bn_decay,
                                            data_format=data_format)
            if use_nchw: new_points = tf.transpose(new_points, [0, 2, 3, 1])

        new_points = tf.squeeze(new_points, [2])  # (batch_size, npoints, mlp2[-1])
        return new_xyz, new_points, idx
예제 #20
0
    def create_encoder(self, point_cloud):
        point_cloud = tf.reshape(point_cloud, (BATCH_SIZE, NUM_POINT, 3))
        ''' Previous Solution Author Provided '''
        # point_cloud_transformed = point_cloud
        # adj_matrix = tf_util.pairwise_distance(point_cloud_transformed)
        # nn_idx = tf_util.knn(adj_matrix, k=self.knn)
        # x = tf_util.get_edge_feature(point_cloud_transformed, nn_idx=nn_idx, k=self.knn)

        x = self.get_graph_feature(point_cloud, self.knn)
        x = tf_util.conv2d(x,
                           64, [1, 1],
                           padding='VALID',
                           stride=[1, 1],
                           bn=True,
                           bias=False,
                           is_training=self.is_training,
                           activation_fn=tf.nn.leaky_relu,
                           scope='conv1',
                           bn_decay=self.bn_decay)
        x1 = tf.reduce_max(x, axis=-2, keep_dims=True)

        x = self.get_graph_feature(x1, self.knn)
        x = tf_util.conv2d(x,
                           64, [1, 1],
                           padding='VALID',
                           stride=[1, 1],
                           bn=True,
                           bias=False,
                           is_training=self.is_training,
                           activation_fn=tf.nn.leaky_relu,
                           scope='conv2',
                           bn_decay=self.bn_decay)
        x2 = tf.reduce_max(x, axis=-2, keep_dims=True)

        x = self.get_graph_feature(x2, self.knn)
        x = tf_util.conv2d(x,
                           128, [1, 1],
                           padding='VALID',
                           stride=[1, 1],
                           bn=True,
                           bias=False,
                           is_training=self.is_training,
                           activation_fn=tf.nn.leaky_relu,
                           scope='conv3',
                           bn_decay=self.bn_decay)
        x3 = tf.reduce_max(x, axis=-2, keep_dims=True)

        x = self.get_graph_feature(x3, self.knn)
        x = tf_util.conv2d(x,
                           256, [1, 1],
                           padding='VALID',
                           stride=[1, 1],
                           bn=True,
                           bias=False,
                           is_training=self.is_training,
                           activation_fn=tf.nn.leaky_relu,
                           scope='conv4',
                           bn_decay=self.bn_decay)
        x4 = tf.reduce_max(x, axis=-2, keep_dims=True)

        x = tf_util.conv2d(tf.concat([x1, x2, x3, x4], axis=-1),
                           1024, [1, 1],
                           padding='VALID',
                           stride=[1, 1],
                           bn=True,
                           bias=False,
                           is_training=self.is_training,
                           activation_fn=tf.nn.leaky_relu,
                           scope='agg',
                           bn_decay=self.bn_decay)

        x1 = tf.reduce_max(x, axis=1, keep_dims=True)
        x2 = tf.reduce_mean(x, axis=1, keep_dims=True)
        # pdb.set_trace()
        features = tf.reshape(tf.concat([x1, x2], axis=-1), [BATCH_SIZE, -1])
        return features
예제 #21
0
def global_spatial_transformer(point_cloud,
                               is_training,
                               K=3,
                               bn=True,
                               bn_decay=None,
                               is_dist=True):
    """ Input (XYZ) Transform Net, input is BxNx3 gray image
        Return:
            Transformation matrix of size KxK """

    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value

    net = tf_util.conv2d(point_cloud,
                         64, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         bn=bn,
                         is_training=is_training,
                         scope='tconv1',
                         bn_decay=bn_decay,
                         is_dist=is_dist)
    net = tf_util.conv2d(net,
                         128, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         bn=bn,
                         is_training=is_training,
                         scope='tconv2',
                         bn_decay=bn_decay,
                         is_dist=is_dist)
    net = tf.reduce_max(net, axis=-2, keep_dims=True)

    net = tf_util.conv2d(net,
                         1024, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         bn=bn,
                         is_training=is_training,
                         scope='tconv3',
                         bn_decay=bn_decay,
                         is_dist=is_dist)
    net = tf_util.max_pool2d(net, [num_point, 1],
                             padding='VALID',
                             scope='tmaxpool')

    net = tf.reshape(net, [batch_size, -1])
    net = tf_util.fully_connected(net,
                                  512,
                                  bn=bn,
                                  is_training=is_training,
                                  scope='tfc1',
                                  bn_decay=bn_decay,
                                  is_dist=is_dist)
    net = tf_util.fully_connected(net,
                                  256,
                                  bn=bn,
                                  is_training=is_training,
                                  scope='tfc2',
                                  bn_decay=bn_decay,
                                  is_dist=is_dist)

    with tf.variable_scope('transform_XYZ') as sc:
        weights = tf.get_variable('weights', [256, K * K],
                                  initializer=tf.constant_initializer(0.0),
                                  dtype=tf.float32)
        biases = tf.get_variable('biases', [K * K],
                                 initializer=tf.constant_initializer(0.0),
                                 dtype=tf.float32)
        biases += tf.constant(np.eye(K).flatten(), dtype=tf.float32)
        transform = tf.matmul(net, weights)
        transform = tf.nn.bias_add(transform, biases)

    transform = tf.reshape(transform, [batch_size, K, K])

    return transform
예제 #22
0
def feature_transform_net(inputs, is_training, bn_decay=None, K=64):
    """ Feature Transform Net, input is BxNx1xK
        Return:
            Transformation matrix of size KxK
    """
    batch_size = inputs.get_shape()[0]  # .value
    num_point = inputs.get_shape()[1]  # .value

    net = tf_util.conv2d(inputs,
                         64, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         bn=True,
                         is_training=is_training,
                         scope='tconv1',
                         bn_decay=bn_decay)
    net = tf_util.conv2d(net,
                         128, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         bn=True,
                         is_training=is_training,
                         scope='tconv2',
                         bn_decay=bn_decay)
    net = tf_util.conv2d(net,
                         1024, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         bn=True,
                         is_training=is_training,
                         scope='tconv3',
                         bn_decay=bn_decay)
    net = tf_util.max_pool2d(net, [num_point, 1],
                             padding='VALID',
                             scope='tmaxpool')

    net = tf.reshape(net, [batch_size, -1])
    net = tf_util.fully_connected(net,
                                  512,
                                  bn=True,
                                  is_training=is_training,
                                  scope='tfc1',
                                  bn_decay=bn_decay)
    net = tf_util.fully_connected(net,
                                  256,
                                  bn=True,
                                  is_training=is_training,
                                  scope='tfc2',
                                  bn_decay=bn_decay)

    with tf.compat.v1.variable_scope('transform_feat') as sc:
        weights = tf.compat.v1.get_variable(
            'weights', [256, K * K],
            initializer=tf.compat.v1.constant_initializer(0.0),
            dtype=tf.float32)
        biases = tf.compat.v1.get_variable(
            'biases', [K * K],
            initializer=tf.compat.v1.constant_initializer(0.0),
            dtype=tf.float32)
        biases.assign_add(tf.constant(np.eye(K).flatten(), dtype=tf.float32))
        transform = tf.matmul(net, weights)
        transform = tf.nn.bias_add(transform, biases)

    transform = tf.reshape(transform, [batch_size, K, K])
    return transform
예제 #23
0
def pointnet_sa_module_msg(xyz, points, radius_list, nsample_list, 
                           mlp_list, is_training, bn_decay, bn, 
                           fps_sample_range_list, fps_method_list, npoint_list, 
                           former_fps_idx, use_attention, scope,
                           dilated_group, vote_ctr=None, aggregation_channel=None,
                           debugging=False,
                           epsilon=1e-5, img_features=None):
    ''' PointNet Set Abstraction (SA) module with Multi-Scale Grouping (MSG)
        Input:
            xyz: (batch_size, ndataset, 3) TF tensor
            points: (batch_size, ndataset, channel) TF tensor
            npoint: int -- points sampled in farthest point sampling
            radius_list: list of float32 -- search radius in local region
            nsample_list: list of int32 -- how many points in each local region
            mlp_list: list of list of int32 -- output size for MLP on each point
            fps_method: 'F-FPS', 'D-FPS', 'FS'
            fps_start_idx: 
        Return:
            new_xyz: (batch_size, npoint, 3) TF tensor
            new_points: (batch_size, npoint, \sum_k{mlp[k][-1]}) TF tensor
    '''
    bs = xyz.get_shape().as_list()[0]
    with tf.variable_scope(scope) as sc:
        cur_fps_idx_list = []
        last_fps_end_index = 0
        for fps_sample_range, fps_method, npoint in zip(fps_sample_range_list, fps_method_list, npoint_list):
            tmp_xyz = tf.slice(xyz, [0, last_fps_end_index, 0], [-1, fps_sample_range, -1]) 
            tmp_points = tf.slice(points, [0, last_fps_end_index, 0], [-1, fps_sample_range, -1])
            if npoint == 0: 
                last_fps_end_index += fps_sample_range 
                continue
            if vote_ctr is not None:
                npoint = vote_ctr.get_shape().as_list()[1]
                fps_idx = tf.tile(tf.reshape(tf.range(npoint), [1, npoint]), [bs, 1])
            elif fps_method == 'FS':
                features_for_fps = tf.concat([tmp_xyz, tmp_points], axis=-1)
                features_for_fps_distance = model_util.calc_square_dist(features_for_fps, features_for_fps, norm=False) 
                fps_idx_1 = farthest_point_sample_with_distance(npoint, features_for_fps_distance)
                fps_idx_2 = farthest_point_sample(npoint, tmp_xyz)
                fps_idx = tf.concat([fps_idx_1, fps_idx_2], axis=-1) # [bs, npoint * 2]
            elif npoint == tmp_xyz.get_shape().as_list()[1]:
                fps_idx = tf.tile(tf.reshape(tf.range(npoint), [1, npoint]), [bs, 1])
            elif fps_method == 'F-FPS':
                features_for_fps = tf.concat([tmp_xyz, tmp_points], axis=-1)
                features_for_fps_distance = model_util.calc_square_dist(features_for_fps, features_for_fps, norm=False) 
                fps_idx = farthest_point_sample_with_distance(npoint, features_for_fps_distance)
            else: # D-FPS
                fps_idx = farthest_point_sample(npoint, tmp_xyz)

            fps_idx = fps_idx + last_fps_end_index 
            cur_fps_idx_list.append(fps_idx)
            last_fps_end_index += fps_sample_range 
        fps_idx = tf.concat(cur_fps_idx_list, axis=-1)

        if former_fps_idx is not None:
            fps_idx = tf.concat([fps_idx, former_fps_idx], axis=-1) 

        if vote_ctr is not None:
            new_xyz = gather_point(vote_ctr, fps_idx)
        else:
            new_xyz = gather_point(xyz, fps_idx)

        # if deformed_xyz is not None, then no attention model
        if use_attention:
            # first gather the points out 
            new_points = gather_point(points, fps_idx) # [bs, npoint, c] 

            # choose farthest feature to center points
            # [bs, npoint, ndataset]
            relation = model_util.calc_square_dist(new_points, points)
            # choose these points with largest distance to center_points
            _, relation_idx = tf.nn.top_k(relation, k=relation.shape.as_list()[-1])
 
        idx_list, pts_cnt_list = [], []
        cur_radius_list = []
        for i in range(len(radius_list)):
            radius = radius_list[i]
            nsample = nsample_list[i]
            if dilated_group:
                # cfg.POINTNET.DILATED_GROUPING
                if i == 0: min_radius = 0.
                else: min_radius = radius_list[i - 1]
                idx, pts_cnt = query_ball_point_dilated(min_radius, radius, nsample, xyz, new_xyz)
            elif use_attention:
                idx, pts_cnt = query_ball_point_withidx(radius, nsample, xyz, new_xyz, relation_idx)
            else:
                idx, pts_cnt = query_ball_point(radius, nsample, xyz, new_xyz)
            idx_list.append(idx)
            pts_cnt_list.append(pts_cnt)

        # debugging
        debugging_list = []
        new_points_list = []
        for i in range(len(radius_list)):
            nsample = nsample_list[i]
            idx, pts_cnt = idx_list[i], pts_cnt_list[i]
            radius = radius_list[i]

            pts_cnt_mask = tf.cast(tf.greater(pts_cnt, 0), tf.int32) # [bs, npoint]
            pts_cnt_fmask = tf.cast(pts_cnt_mask, tf.float32)
            idx = idx * tf.expand_dims(pts_cnt_mask, axis=2)  # [bs, npoint, nsample]
            grouped_xyz = group_point(xyz, idx)
            original_xyz = grouped_xyz
            grouped_xyz -= tf.expand_dims(new_xyz, 2)
            grouped_points = group_point(points, idx)

            grouped_points = tf.concat([grouped_points, grouped_xyz], axis=-1)

            for j, num_out_channel in enumerate(mlp_list[i]):
                grouped_points = tf_util.conv2d(grouped_points, 
                                                num_out_channel, 
                                                [1, 1],
                                                padding='VALID', 
                                                stride=[1, 1], 
                                                bn=bn, 
                                                is_training=is_training,
                                                scope='conv%d_%d' % (i, j), 
                                                bn_decay=bn_decay)

            new_points = tf.reduce_max(grouped_points, axis=[2])

            new_points *= tf.expand_dims(pts_cnt_fmask, axis=-1)
            new_points_list.append(new_points)
        if len(new_points_list) > 0:
            new_points_concat = tf.concat(new_points_list, axis=-1)
            if img_features is not None:
                new_points_concat = tf.concat([new_points_concat, img_features], axis=-1)

            if cfg.MODEL.NETWORK.AGGREGATION_SA_FEATURE:
                new_points_concat = tf_util.conv1d(new_points_concat, aggregation_channel, 1, padding='VALID', bn=bn, is_training=is_training, scope='ensemble', bn_decay=bn_decay) 
        else: 
            new_points_concat = gather_point(points, fps_idx) 

    return new_xyz, new_points_concat, fps_idx
예제 #24
0
    def create_encoder(self, inputs, npts):
        """PointNet encoder"""

        inputs = tf.reshape(inputs, (BATCH_SIZE, NUM_POINT, 3))
        with tf.variable_scope('transform_net1') as sc:
            transform = input_transform_net(inputs,
                                            self.is_training,
                                            self.bn_decay,
                                            K=3)

        point_cloud_transformed = tf.matmul(inputs, transform)
        input_image = tf.expand_dims(point_cloud_transformed, -1)

        net = conv2d(inputs=input_image,
                     num_output_channels=64,
                     kernel_size=[1, 3],
                     scope='conv1',
                     padding='VALID',
                     stride=[1, 1],
                     bn=True,
                     is_training=self.is_training,
                     bn_decay=self.bn_decay)
        net = conv2d(inputs=net,
                     num_output_channels=64,
                     kernel_size=[1, 1],
                     scope='conv2',
                     padding='VALID',
                     stride=[1, 1],
                     bn=True,
                     is_training=self.is_training,
                     bn_decay=self.bn_decay)

        with tf.variable_scope('transform_net2') as sc:
            transform = feature_transform_net(net,
                                              self.is_training,
                                              self.bn_decay,
                                              K=64)
        net_transformed = tf.matmul(tf.squeeze(net, axis=[2]), transform)
        net_transformed = tf.expand_dims(net_transformed, [2])
        '''conv2d, with kernel size of [1,1,1,1] and stride of [1,1,1,1],
		basically equals with the MLPs'''

        # use_xavier=True, stddev=1e-3, weight_decay=0.0, activation_fn=tf.nn.relu,
        net = conv2d(net_transformed,
                     64, [1, 1],
                     scope='conv3',
                     padding='VALID',
                     stride=[1, 1],
                     bn=True,
                     is_training=self.is_training,
                     bn_decay=self.bn_decay)
        net = conv2d(net,
                     128, [1, 1],
                     padding='VALID',
                     stride=[1, 1],
                     bn=True,
                     is_training=self.is_training,
                     scope='conv4',
                     bn_decay=self.bn_decay)
        net = conv2d(net,
                     1024, [1, 1],
                     padding='VALID',
                     stride=[1, 1],
                     bn=True,
                     is_training=self.is_training,
                     scope='conv5',
                     bn_decay=self.bn_decay)

        net = max_pool2d(net, [NUM_POINT, 1], padding='VALID', scope='maxpool')

        features = tf.reshape(net, [BATCH_SIZE, -1])
        return features
예제 #25
0
def get_model(point_cloud, is_training, part_num, batch_size, \
 num_point, weight_decay, bn_decay=None):
    """ ConvNet baseline, input is BxNx3 gray image """
    end_points = {}

    with tf.variable_scope('transform_net1') as sc:
        K = 3
        transform = get_transform(point_cloud, is_training, bn_decay, K=3)
    point_cloud_transformed = tf.matmul(point_cloud, transform)

    input_image = tf.expand_dims(point_cloud_transformed, -1)
    out1 = tf_util.conv2d(input_image,
                          64, [1, K],
                          padding='VALID',
                          stride=[1, 1],
                          bn=True,
                          is_training=is_training,
                          scope='conv1',
                          bn_decay=bn_decay)
    out2 = tf_util.conv2d(out1,
                          128, [1, 1],
                          padding='VALID',
                          stride=[1, 1],
                          bn=True,
                          is_training=is_training,
                          scope='conv2',
                          bn_decay=bn_decay)
    out3 = tf_util.conv2d(out2,
                          128, [1, 1],
                          padding='VALID',
                          stride=[1, 1],
                          bn=True,
                          is_training=is_training,
                          scope='conv3',
                          bn_decay=bn_decay)

    with tf.variable_scope('transform_net2') as sc:
        K = 128
        transform = get_transform_K(out3, is_training, bn_decay, K)

    end_points['transform'] = transform

    squeezed_out3 = tf.reshape(out3, [batch_size, num_point, 128])
    net_transformed = tf.matmul(squeezed_out3, transform)
    net_transformed = tf.expand_dims(net_transformed, [2])

    out4 = tf_util.conv2d(net_transformed,
                          512, [1, 1],
                          padding='VALID',
                          stride=[1, 1],
                          bn=True,
                          is_training=is_training,
                          scope='conv4',
                          bn_decay=bn_decay)
    out5 = tf_util.conv2d(out4,
                          2048, [1, 1],
                          padding='VALID',
                          stride=[1, 1],
                          bn=True,
                          is_training=is_training,
                          scope='conv5',
                          bn_decay=bn_decay)
    out_max = tf_util.max_pool2d(out5, [num_point, 1],
                                 padding='VALID',
                                 scope='maxpool')

    expand = tf.tile(out_max, [1, num_point, 1, 1])
    concat = tf.concat(axis=3, values=[expand, out1, out2, out3, out4, out5])

    net = tf_util.conv2d(concat,
                         256, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         bn_decay=bn_decay,
                         bn=True,
                         is_training=is_training,
                         scope='seg/conv1',
                         weight_decay=weight_decay)
    net = tf_util.dropout(net,
                          keep_prob=0.8,
                          is_training=is_training,
                          scope='seg/dp1')
    net = tf_util.conv2d(net,
                         256, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         bn_decay=bn_decay,
                         bn=True,
                         is_training=is_training,
                         scope='seg/conv2',
                         weight_decay=weight_decay)
    net = tf_util.dropout(net,
                          keep_prob=0.8,
                          is_training=is_training,
                          scope='seg/dp2')
    net = tf_util.conv2d(net,
                         128, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         bn_decay=bn_decay,
                         bn=True,
                         is_training=is_training,
                         scope='seg/conv3',
                         weight_decay=weight_decay)
    net = tf_util.conv2d(net,
                         part_num, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         activation_fn=None,
                         bn=False,
                         scope='seg/conv4',
                         weight_decay=weight_decay)

    net = tf.reshape(net, [batch_size, num_point, part_num])

    return net, end_points
예제 #26
0
def get_model(inputs, is_training, bn_decay=None, num_class=40, FLAGS=None):
    """ Classification PointNet, input is BxNx3, output Bx40 """
    point_cloud = inputs[:, :, 0:3]
    if FLAGS.normal:
        D = 6
        points = inputs[:, :, 3:]
    else:
        D = 3
        points = None

    # --------------------------------------- STN -------------------------------------
    if FLAGS.STN:
        with tf.variable_scope('transform_net') as sc:
            transform = input_transform_net(point_cloud,
                                            is_training,
                                            bn_decay,
                                            K=3)
        point_cloud = tf.matmul(point_cloud, transform)

    # ---------------------------------- Node Sampling --------------------------------
    with tf.variable_scope('group_sampling') as sc:
        KNN = FLAGS.KNN
        point_cloud_sampled, nn_points, _, _ = sample_and_group(
            npoint=FLAGS.node_num,
            radius=0.2,
            nsample=KNN,
            xyz=point_cloud,
            points=points,
            knn=True,
            use_xyz=True)

    point_cloud_sampled = tf.expand_dims(point_cloud_sampled, axis=-1)
    net1 = tf_util.conv2d(point_cloud_sampled,
                          64, [1, 3],
                          padding='VALID',
                          stride=[1, 1],
                          bn=True,
                          is_training=is_training,
                          scope='conv1_1',
                          bn_decay=bn_decay)
    net1 = tf.tile(net1, multiples=[1, 1, KNN, 1])
    net1 = tf.expand_dims(net1, axis=-2)

    nn_points = tf.expand_dims(nn_points, axis=-1)
    net = tf_util.conv3d(nn_points,
                         64, [1, 1, D],
                         padding='VALID',
                         stride=[1, 1, 1],
                         bn=True,
                         is_training=is_training,
                         scope='conv1_2',
                         bn_decay=bn_decay)
    concat = tf.concat(values=[net, net1], axis=-1)

    net = tf_util.conv3d(concat,
                         128, [1, 1, 1],
                         padding='VALID',
                         stride=[1, 1, 1],
                         bn=True,
                         is_training=is_training,
                         scope='conv2',
                         bn_decay=bn_decay)
    net = tf_util.conv3d(net,
                         128, [1, 1, 1],
                         padding='VALID',
                         stride=[1, 1, 1],
                         bn=True,
                         is_training=is_training,
                         scope='conv3',
                         bn_decay=bn_decay)

    # ---------------------- local pooling: merge local feature -------------------------
    if FLAGS.local_pool == 'average':
        pool_k = tf_util.avg_pool3d(net,
                                    kernel_size=[1, KNN, 1],
                                    stride=[1, 2, 2],
                                    padding='VALID',
                                    scope='pool_k')
    else:
        pool_k = tf_util.max_pool3d(net,
                                    kernel_size=[1, KNN, 1],
                                    stride=[1, 2, 2],
                                    padding='VALID',
                                    scope='pool_k')
    net = tf.squeeze(pool_k, axis=2)

    # ---------------------------------- VLAD layer --------------------------------------
    net, index = VLAD(net, FLAGS, is_training, bn_decay, layer_name='VLAD')

    # -------------------------------- classification ------------------------------------
    with tf.name_scope('fc_layer'):
        net = tf_util.fully_connected(net,
                                      512,
                                      bn=True,
                                      is_training=is_training,
                                      scope='fc1',
                                      bn_decay=bn_decay)
        net = tf_util.dropout(net,
                              keep_prob=0.7,
                              is_training=is_training,
                              scope='dp1')
        net = tf_util.fully_connected(net,
                                      256,
                                      bn=True,
                                      is_training=is_training,
                                      scope='fc2',
                                      bn_decay=bn_decay)
        net = tf_util.dropout(net,
                              keep_prob=0.7,
                              is_training=is_training,
                              scope='dp2')
        net = tf_util.fully_connected(net,
                                      num_class,
                                      activation_fn=None,
                                      scope='fc3')

    return net, index
예제 #27
0
    def create_encoder(self, inputs, npts):
        # with tf.variable_scope('encoder_0', reuse=tf.AUTO_REUSE):
        #     features = mlp_conv(inputs, [128, 256])
        #     features_global = tf.reduce_max(features, axis=1, keep_dims=True, name='maxpool_0')
        #     features = tf.concat([features, tf.tile(features_global, [1, tf.shape(inputs)[1], 1])], axis=2)
        # with tf.variable_scope('encoder_1', reuse=tf.AUTO_REUSE):
        #     features = mlp_conv(features, [512, 1024])
        #     features = tf.reduce_max(features, axis=1, name='maxpool_1')
        # end_points = {}

        # if DATASET =='modelnet40':
        inputs = tf.reshape(inputs, (BATCH_SIZE, NUM_POINT, 3))

        with tf.variable_scope('transform_net1') as sc:
            transform = input_transform_net(inputs,
                                            self.is_training,
                                            self.bn_decay,
                                            K=3)

        point_cloud_transformed = tf.matmul(inputs, transform)
        input_image = tf.expand_dims(point_cloud_transformed, -1)

        net = conv2d(inputs=input_image,
                     num_output_channels=64,
                     kernel_size=[1, 3],
                     scope='conv1',
                     padding='VALID',
                     stride=[1, 1],
                     bn=True,
                     is_training=self.is_training,
                     bn_decay=self.bn_decay)
        net = conv2d(inputs=net,
                     num_output_channels=64,
                     kernel_size=[1, 1],
                     scope='conv2',
                     padding='VALID',
                     stride=[1, 1],
                     bn=True,
                     is_training=self.is_training,
                     bn_decay=self.bn_decay)

        with tf.variable_scope('transform_net2') as sc:
            transform = feature_transform_net(net,
                                              self.is_training,
                                              self.bn_decay,
                                              K=64)
        # end_points['transform'] = transform
        net_transformed = tf.matmul(tf.squeeze(net, axis=[2]), transform)
        net_transformed = tf.expand_dims(net_transformed, [2])
        '''conv2d, with kernel size of [1,1,1,1] and stride of [1,1,1,1],
		basically equals with the MLPs'''

        # use_xavier=True, stddev=1e-3, weight_decay=0.0, activation_fn=tf.nn.relu,
        net = conv2d(net_transformed,
                     64, [1, 1],
                     scope='conv3',
                     padding='VALID',
                     stride=[1, 1],
                     bn=True,
                     is_training=self.is_training,
                     bn_decay=self.bn_decay)
        net = conv2d(net,
                     128, [1, 1],
                     padding='VALID',
                     stride=[1, 1],
                     bn=True,
                     is_training=self.is_training,
                     scope='conv4',
                     bn_decay=self.bn_decay)
        net = conv2d(net,
                     1024, [1, 1],
                     padding='VALID',
                     stride=[1, 1],
                     bn=True,
                     is_training=self.is_training,
                     scope='conv5',
                     bn_decay=self.bn_decay)

        net = max_pool2d(net, [NUM_POINT, 1], padding='VALID', scope='maxpool')

        features = tf.reshape(net, [BATCH_SIZE, -1])
        return features
예제 #28
0
    def build_layer(self,
                    xyz_list,
                    feature_list,
                    fps_idx_list,
                    bn_decay,
                    output_dict,
                    p2,
                    img_input=None,
                    img_seg_point_cloud=None,
                    point_seg_net=None,
                    pooling_size=None):
        """
        Build layers
        """
        xyz_input = []
        for xyz_index in self.xyz_index:
            xyz_input.append(xyz_list[xyz_index])

        feature_input = []
        for feature_index in self.feature_index:
            feature_input.append(feature_list[feature_index])

        if self.former_fps_idx != -1:
            former_fps_idx = fps_idx_list[self.former_fps_idx]
        else:
            former_fps_idx = None

        if self.vote_ctr_index != -1:
            vote_ctr = xyz_list[self.vote_ctr_index]
        else:
            vote_ctr = None

        # image feature extraction
        if vote_ctr is not None:
            num_point = vote_ctr.get_shape().as_list()[1]
            batch_size = vote_ctr.get_shape().as_list()[0]

            img_rois = projection.crop_rois(vote_ctr,
                                            p2,
                                            img_input,
                                            pooling_size=pooling_size)

            img_features = tf_util.conv2d(img_rois,
                                          256, [3, 3],
                                          padding='VALID',
                                          stride=[1, 1],
                                          bn=self.bn,
                                          is_training=self.is_training,
                                          scope=self.scope,
                                          bn_decay=bn_decay)
            img_features = tf.reshape(img_features,
                                      [batch_size, num_point, 256])

        else:
            img_features = None

        if self.layer_type == 'SA_Layer':
            if self.scope == 'layer4':
                new_xyz, new_points, new_fps_idx = pointnet_sa_module_msg(
                    xyz_input[0],
                    feature_input[0],
                    self.radius_list,
                    self.nsample_list,
                    self.mlp_list,
                    self.is_training,
                    bn_decay,
                    self.bn,
                    self.fps_sample_range_list,
                    self.fps_method_list,
                    self.npoint_list,
                    former_fps_idx,
                    self.use_attention,
                    self.scope,
                    self.dilated_group,
                    vote_ctr,
                    self.aggregation_channel,
                    img_features=img_features)
            else:
                new_xyz, new_points, new_fps_idx = pointnet_sa_module_msg(
                    xyz_input[0], feature_input[0], self.radius_list,
                    self.nsample_list, self.mlp_list, self.is_training,
                    bn_decay, self.bn, self.fps_sample_range_list,
                    self.fps_method_list, self.npoint_list, former_fps_idx,
                    self.use_attention, self.scope, self.dilated_group,
                    vote_ctr, self.aggregation_channel)
            xyz_list.append(new_xyz)
            feature_list.append(new_points)
            fps_idx_list.append(new_fps_idx)

        elif self.layer_type == 'SA_Layer_SSG_Last':
            new_points = pointnet_sa_module(
                xyz_input[0],
                feature_input[0],
                self.mlp_list,
                self.is_training,
                bn_decay,
                self.bn,
                self.scope,
            )
            xyz_list.append(None)
            feature_list.append(new_points)
            fps_idx_list.append(None)

        elif self.layer_type == 'FP_Layer':
            new_points = pointnet_fp_module(xyz_input[0], xyz_input[1],
                                            feature_input[0], feature_input[1],
                                            self.mlp_list, self.is_training,
                                            bn_decay, self.scope, self.bn)
            xyz_list.append(xyz_input[0])
            feature_list.append(new_points)
            fps_idx_list.append(None)

        elif self.layer_type == 'Vote_Layer':
            # new_xyz, new_points, ctr_offsets = vote_layer(xyz_input[0], feature_input[0], self.mlp_list, self.is_training, bn_decay, self.bn, self.scope)
            # output_dict[maps_dict.PRED_VOTE_BASE].append(xyz_input[0])
            # output_dict[maps_dict.PRED_VOTE_OFFSET].append(ctr_offsets)
            #
            # if voting_xyz is not None:
            #     voting_xyz_update = tf.concat([new_xyz, voting_xyz], axis=1)
            #     voting_feature_update = tf.concat([new_points, voting_points], axis=1)
            #     new_xyz, new_points, fps_idx_update = pointnet_fps_method(voting_xyz_update, voting_feature_update,
            #                                                               [-1], ['F-FPS'], [256], self.scope, vote_ctr=None)

            xyz_update = tf.concat([xyz_input[0], img_seg_point_cloud], axis=1)
            feature_update = tf.concat([feature_input[0], point_seg_net],
                                       axis=1)

            xyz_update, feature_update, fps_idx_update = pointnet_fps_method(
                xyz_update,
                feature_update, [-1], ['F-FPS'], [256],
                self.scope,
                vote_ctr=None)

            new_xyz, new_points, ctr_offsets = vote_layer(
                xyz_update, feature_update, self.mlp_list, self.is_training,
                bn_decay, self.bn, self.scope)
            output_dict[maps_dict.PRED_VOTE_BASE].append(xyz_update)
            output_dict[maps_dict.PRED_VOTE_OFFSET].append(ctr_offsets)

            xyz_list.append(new_xyz)
            feature_list.append(new_points)
            fps_idx_list.append(None)

        return xyz_list, feature_list, fps_idx_list
예제 #29
0
def get_model_other(point_cloud, is_training, bn_decay=None):
    """
      B: batch size;
      N: number of points,
      C: channels;
      k: number of nearest neighbors
      point_cloud: B*N*C
    """

    end_points = {}
    minSF = tf.reshape(tf.math.argmin(point_cloud[:, :, 0], axis=1), (-1, 1))
    batch_size = point_cloud.get_shape()[0]  # .value

    # # 1. graph for first EdgeConv B N C=6

    adj_matrix = tf_util.pairwise_distance(
        point_cloud[:, :, :para.dim])  # B N C=6 => B*N*N
    # adj_matrix = tf_util.pairwise_distance(point_cloud[:, :, 1:para.dim])  # B N C=6 => B*N*N
    nn_idx = tf_util.knn(adj_matrix, k=20)

    # get the distance to minSF of 1024 points
    allSF_dist = tf.gather(adj_matrix, indices=minSF, axis=2, batch_dims=1)
    end_points['knn1'] = allSF_dist

    point_cloud = tf.expand_dims(point_cloud[:, :, :para.dim], axis=-2)
    # point_cloud = tf.expand_dims(point_cloud[:, :, 1:para.dim], axis=-2)
    edge_feature = tf_util.get_edge_feature(point_cloud, nn_idx=nn_idx, k=20)
    net = tf_util.conv2d(edge_feature,
                         64, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         bn=True,
                         is_training=is_training,
                         scope='dgcnn1',
                         bn_decay=bn_decay)
    net = tf.reduce_max(net, axis=-2, keepdims=True)
    net1 = net

    # # 2. graph for second EdgeConv B N C=64
    adj_matrix = tf_util.pairwise_distance(net)
    nn_idx = tf_util.knn(adj_matrix, k=20)

    # get the distance to minSF of 1024 points
    allSF_dist = tf.gather(adj_matrix, indices=minSF, axis=2, batch_dims=1)
    end_points['knn2'] = allSF_dist

    # net: B*N*1*6+64=71
    net = tf.concat([point_cloud, net1], axis=-1)

    # edge_feature: B*N*k*142
    edge_feature = tf_util.get_edge_feature(net, nn_idx=nn_idx, k=20)
    net = tf_util.conv2d(edge_feature,
                         64, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         bn=True,
                         is_training=is_training,
                         scope='dgcnn2',
                         bn_decay=bn_decay)
    net = tf.reduce_max(net, axis=-2, keepdims=True)
    net2 = net

    # 3. graph for third EdgeConv B N C=64
    adj_matrix = tf_util.pairwise_distance(net)
    nn_idx = tf_util.knn(adj_matrix, k=20)

    # get the distance to minSF of 1024 points
    allSF_dist = tf.gather(adj_matrix, indices=minSF, axis=2, batch_dims=1)
    end_points['knn3'] = allSF_dist

    # net: B*N*1*6+64+64=134
    net = tf.concat([point_cloud, net1, net2], axis=-1)

    # edge_feature: B*N*k*268
    edge_feature = tf_util.get_edge_feature(net, nn_idx=nn_idx, k=20)
    net = tf_util.conv2d(edge_feature,
                         64, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         bn=True,
                         is_training=is_training,
                         scope='dgcnn3',
                         bn_decay=bn_decay)
    net = tf.reduce_max(net, axis=-2, keepdims=True)
    net3 = net

    # 4. graph for fourth EdgeConv B N C=64
    adj_matrix = tf_util.pairwise_distance(net)
    nn_idx = tf_util.knn(adj_matrix, k=20)

    # get the distance to minSF of 1024 points
    allSF_dist = tf.gather(adj_matrix, indices=minSF, axis=2, batch_dims=1)
    end_points['knn4'] = allSF_dist

    # net: B*N*1*6+64+64+64=198
    net = tf.concat([point_cloud, net1, net2, net3], axis=-1)

    # edge_feature: B*N*k*396
    edge_feature = tf_util.get_edge_feature(net, nn_idx=nn_idx, k=20)
    net = tf_util.conv2d(edge_feature,
                         128, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         bn=True,
                         is_training=is_training,
                         scope='dgcnn4',
                         bn_decay=bn_decay)
    net = tf.reduce_max(net, axis=-2, keepdims=True)
    net4 = net

    # input: B*N*1*6+64+64+128+128 = 326  => net: B*N*1*1024
    net = tf_util.conv2d(tf.concat([point_cloud, net1, net2, net3, net4],
                                   axis=-1),
                         1024, [1, 1],
                         padding='VALID',
                         stride=[1, 1],
                         bn=True,
                         is_training=is_training,
                         scope='agg',
                         bn_decay=bn_decay)
    # net: B*1*1*1024
    # SF_features = tf.gather(net, indices=minSF, axis=1, batch_dims=1)
    net = tf.reduce_max(net, axis=1, keepdims=True)
    # SF_all = tf.concat([SF_features,net], axis=-1)
    # net: B*1024
    net = tf.squeeze(net)
    # net: B*2048
    # net = tf.squeeze(SF_all)

    # MLP on global point cloud vector
    net = tf.reshape(net, [batch_size, -1])
    print(net.get_shape())
    end_points['global_feature'] = net

    # Fully connected end_points: classifier
    net = tf_util.fully_connected(net,
                                  512,
                                  bn=True,
                                  is_training=is_training,
                                  scope='fc1',
                                  bn_decay=bn_decay)
    end_points['fc1'] = net
    net = tf_util.dropout(net,
                          keep_prob=0.5,
                          is_training=is_training,
                          scope='dp1')
    net = tf_util.fully_connected(net,
                                  256,
                                  bn=True,
                                  is_training=is_training,
                                  scope='fc2',
                                  bn_decay=bn_decay)
    end_points['fc2'] = net
    net = tf_util.dropout(net,
                          keep_prob=0.5,
                          is_training=is_training,
                          scope='dp2')
    net = tf_util.fully_connected(net,
                                  para.outputClassN,
                                  activation_fn=None,
                                  scope='fc3')
    end_points['fc3'] = net
    return net, end_points
예제 #30
0
    def pointnet(self, point_cloud, is_training, bn=True, bn_decay=None):
        """ Classification PointNet, input is BxNx3, output Bxn where n is num classes """
        batch_size = point_cloud.get_shape()[0].value
        num_point = point_cloud.get_shape()[1].value

        input_image = tf.expand_dims(point_cloud, -1)

        # Point functions (MLP implemented as conv2d)
        net = tf_util.conv2d(input_image,
                             64, [1, 3],
                             padding='VALID',
                             stride=[1, 1],
                             bn=bn,
                             is_training=is_training,
                             scope='conv1',
                             bn_decay=bn_decay)
        net = tf_util.conv2d(net,
                             64, [1, 1],
                             padding='VALID',
                             stride=[1, 1],
                             bn=bn,
                             is_training=is_training,
                             scope='conv2',
                             bn_decay=bn_decay)
        net = tf_util.conv2d(net,
                             64, [1, 1],
                             padding='VALID',
                             stride=[1, 1],
                             bn=bn,
                             is_training=is_training,
                             scope='conv3',
                             bn_decay=bn_decay)
        net = tf_util.conv2d(net,
                             128, [1, 1],
                             padding='VALID',
                             stride=[1, 1],
                             bn=bn,
                             is_training=is_training,
                             scope='conv4',
                             bn_decay=bn_decay)
        net = tf_util.conv2d(net,
                             1024, [1, 1],
                             padding='VALID',
                             stride=[1, 1],
                             bn=bn,
                             is_training=is_training,
                             scope='conv5',
                             bn_decay=bn_decay)

        # Symmetric function: max pooling
        net = tf_util.max_pool2d(net, [num_point, 1],
                                 padding='VALID',
                                 scope='maxpool')

        # MLP on global point cloud vector
        net = tf.layers.flatten(net)
        net = tf_util.fully_connected(net,
                                      512,
                                      bn=bn,
                                      is_training=is_training,
                                      scope='fc1',
                                      bn_decay=bn_decay)
        net = tf_util.fully_connected(net,
                                      256,
                                      bn=bn,
                                      is_training=is_training,
                                      scope='fc2',
                                      bn_decay=bn_decay)
        net = tf_util.dropout(net,
                              keep_prob=0.7,
                              is_training=is_training,
                              scope='dp1')
        net = tf_util.fully_connected(net,
                                      self.n_classes,
                                      activation_fn=None,
                                      scope='fc3')

        return net