def write_preprocessed_target_data(_id: int, key: str, mel: np.ndarray, filename: str): raw_mel = mel.tostring() example = tf.train.Example(features=tf.train.Features( feature={ 'id': int64_feature([_id]), 'key': bytes_feature([key.encode('utf-8')]), 'mel': bytes_feature([raw_mel]), 'target_length': int64_feature([len(mel)]), 'mel_width': int64_feature([mel.shape[1]]), })) write_tfrecord(example, filename)
def write_preprocessed_source_data(_id: int, key: str, source: np.ndarray, text, filename: str): raw_source = source.tostring() example = tf.train.Example(features=tf.train.Features( feature={ 'id': int64_feature([_id]), 'key': bytes_feature([key.encode('utf-8')]), 'source': bytes_feature([raw_source]), 'source_length': int64_feature([len(source)]), 'text': bytes_feature([text.encode('utf-8')]), })) write_tfrecord(example, filename)
def write_preprocessed_target_data(_id: int, key: str, codes: np.ndarray, codes_length: int, lang, filename: str): raw_codes = codes.tostring() example = tf.train.Example(features=tf.train.Features( feature={ 'id': int64_feature([_id]), 'key': bytes_feature([key.encode('utf-8')]), 'lang': bytes_feature([lang.encode('utf-8')]), 'codes': bytes_feature([raw_codes]), 'codes_length': int64_feature([codes_length]), 'codes_width': int64_feature([codes.shape[1]]), })) write_tfrecord(example, filename)
def write_prediction_result(id_: int, key: str, alignments: List[np.ndarray], mel: np.ndarray, ground_truth_mel: np.ndarray, text: str, source: np.ndarray, filename: str): example = tf.train.Example(features=tf.train.Features(feature={ 'id': int64_feature([id_]), 'key': bytes_feature([key.encode('utf-8')]), 'mel': bytes_feature([mel.tostring()]), 'mel_length': int64_feature([mel.shape[0]]), 'mel_width': int64_feature([mel.shape[1]]), 'ground_truth_mel': bytes_feature([ground_truth_mel.tostring()]), 'ground_truth_mel_length': int64_feature([ground_truth_mel.shape[0]]), 'alignment': bytes_feature([alignment.tostring() for alignment in alignments]), 'text': bytes_feature([text.encode('utf-8')]), 'source': bytes_feature([source.tostring()]), 'source_length': int64_feature([source.shape[0]]), })) write_tfrecord(example, filename)
def write_preprocessed_source_data(_id: int, key: str, source: np.ndarray, text, phones: np.ndarray, phone_txt, speaker_id, age, gender, lang, filename: str): raw_source = source.tostring() example = tf.train.Example(features=tf.train.Features( feature={ 'id': int64_feature([_id]), 'key': bytes_feature([key.encode('utf-8')]), 'source': bytes_feature([raw_source]), 'source_length': int64_feature([len(source)]), 'text': bytes_feature([text.encode('utf-8')]), 'phone': bytes_feature([phones.tostring()]), 'phone_length': int64_feature([len(phones)]), 'phone_txt': bytes_feature([phone_txt.encode('utf-8')]), 'speaker_id': int64_feature([speaker_id]), 'age': int64_feature([age]), 'gender': int64_feature([gender]), 'lang': bytes_feature([lang.encode('utf-8')]), })) write_tfrecord(example, filename)