def precessCached(jobId): # if not enableCache: # return None, None try: modelHolder = cachedJobs[jobId] if (modelHolder == None): # this should never happen jobs.remove(jobId) del cachedJobs[jobId] else: # remove model from cache if expired if isPast(modelHolder.timestamp, config.getValueByKey("CACHE_EXPIRE_TIME")): jobs.remove(jobId) del cachedJobs[jobId] return None, None openRequest = retrieveRequestById(jobId) if openRequest == None: jobs.remove(jobId) del cachedJobs[jobId] return None, None if isCompletedStatus(openRequest['status']): jobs.remove(jobId) del cachedJobs[jobId] return None, None ret = canRequestProcess(openRequest) if (ret == None): return None, None jobs.remove(jobId) del cachedJobs[jobId] return openRequest, modelHolder except Exception as e: logger.warning( "retrieveCachedRequest encount error while retrieving cache ", e) return None, None
def main(): #Default Parameters can be overwrite by environments max_cache = convertStrToInt(os.environ.get("MAX_CACHE_SIZE", str(MAX_CACHE_SIZE)), MAX_CACHE_SIZE) ES_ENDPOINT = os.environ.get('ES_ENDPOINT', 'http://elasticsearch-discovery-service.foremast.svc.cluster.local:9200') ML_ALGORITHM = os.environ.get('ML_ALGORITHM', AI_MODEL.MOVING_AVERAGE_ALL.value) FLUSH_FREQUENCY = os.environ.get('FLUSH_FREQUENCY', 5) OIM_BUCKET = os.environ.get("OIM_BUCKET") MIN_MANN_WHITE_DATA_POINTS = convertStrToInt(os.environ.get("MIN_MANN_WHITE_DATA_POINTS", str(MANN_WHITE_MIN_DATA_POINT)), MANN_WHITE_MIN_DATA_POINT) MIN_WILCOXON_DATA_POINTS = convertStrToInt(os.environ.get("MIN_WILCOXON_DATA_POINTS", str(WILCOXON_MIN_DATA_POINTS)), WILCOXON_MIN_DATA_POINTS) MIN_KRUSKAL_DATA_POINTS=convertStrToInt(os.environ.get("MIN_KRUSKAL_DATA_POINTS", str(KRUSKAL_MIN_DATA_POINTS)), KRUSKAL_MIN_DATA_POINTS) ML_THRESHOLD = convertStrToFloat(os.environ.get(THRESHOLD, str(DEFAULT_THRESHOLD)), DEFAULT_THRESHOLD) #lower threshold is for warning. ML_LOWER_THRESHOLD = convertStrToFloat(os.environ.get(LOWER_THRESHOLD, str(DEFAULT_LOWER_THRESHOLD)), DEFAULT_LOWER_THRESHOLD) ML_BOUND = convertStrToInt(os.environ.get(BOUND, str(IS_UPPER_BOUND)), IS_UPPER_BOUND) ML_MIN_LOWER_BOUND = convertStrToFloat(os.environ.get(MIN_LOWER_BOUND, str(DEFAULT_MIN_LOWER_BOUND)), DEFAULT_MIN_LOWER_BOUND) # this is for pairwise algorithem which is used for canary deployment anomaly detetion. config.setKV("MIN_MANN_WHITE_DATA_POINTS",MIN_MANN_WHITE_DATA_POINTS) config.setKV("MIN_WILCOXON_DATA_POINTS",MIN_WILCOXON_DATA_POINTS) config.setKV("MIN_KRUSKAL_DATA_POINTS",MIN_KRUSKAL_DATA_POINTS) config.setKV(THRESHOLD, ML_THRESHOLD ) config.setKV(BOUND, ML_BOUND) config.setKV(MIN_LOWER_BOUND, ML_MIN_LOWER_BOUND) config.setKV("FLUSH_FREQUENCY", int(FLUSH_FREQUENCY)) config.setKV("OIM_BUCKET", OIM_BUCKET) #Add Metric source env config.setKV("SOURCE_ENV", "ppd") MODE_DROP_ANOMALY = os.environ.get('MODE_DROP_ANOMALY', 'y') config.setKV('MODE_DROP_ANOMALY', MODE_DROP_ANOMALY) wavefrontEndpoint = os.environ.get('WAVEFRONT_ENDPOINT') wavefrontToken = os.environ.get('WAVEFRONT_TOKEN') foremastEnv = os.environ.get("FOREMAST_ENV",'qa') metricDestation = os.environ.get('METRIC_DESTINATION',"prometheus") if wavefrontEndpoint is not None: config.setKV('WAVEFRONT_ENDPOINT',wavefrontEndpoint) else: logger.error("WAVEFRONT_ENDPOINT is null!!! foremat-brain will throw exception is you consumer wavefront metric...") if wavefrontToken is not None: config.setKV('WAVEFRONT_TOKEN',wavefrontToken) else: logger.error("WAVEFRONT_TOKEN is null!!! foremat-brain will throw exception is you consumer wavefront metric...") if metricDestation is not None: config.setKV('METRIC_DESTINATION',metricDestation) else: config.setKV('METRIC_DESTINATION',"prometheus") if foremastEnv is None or foremastEnv == '': config.setKV("FOREMAST_ENV",'qa') else: config.setKV("FOREMAST_ENV",foremastEnv) metric_threshold_count = convertStrToInt(os.environ.get(METRIC_TYPE_THRESHOLD_COUNT, -1), METRIC_TYPE_THRESHOLD_COUNT) if metric_threshold_count >= 0: for i in range(metric_threshold_count): istr = str(i) mtype = os.environ.get(METRIC_TYPE+istr,'') if mtype!='': mthreshold = convertStrToFloat(os.environ.get(THRESHOLD+istr, str(ML_THRESHOLD)), ML_THRESHOLD) mbound = convertStrToInt(os.environ.get(BOUND+istr, str(ML_BOUND )), ML_BOUND ) mminlowerbound = convertStrToInt(os.environ.get(MIN_LOWER_BOUND+istr, str(ML_MIN_LOWER_BOUND)), ML_MIN_LOWER_BOUND) config.setThresholdKV(mtype,THRESHOLD,mthreshold) config.setThresholdKV(mtype,BOUND, mbound) config.setThresholdKV(mtype,MIN_LOWER_BOUND, mminlowerbound) ML_PROPHET_PERIOD = convertStrToInt(os.environ.get(PROPHET_PERIOD, str(DEFAULT_PROPHET_PERIOD)),DEFAULT_PROPHET_PERIOD) ML_PROPHET_FREQ = os.environ.get(PROPHET_FREQ, DEFAULT_PROPHET_FREQ) #prophet algm parameters end ML_PAIRWISE_ALGORITHM =os.environ.get(PAIRWISE_ALGORITHM, ALL) ML_PAIRWISE_THRESHOLD = convertStrToFloat(os.environ.get(PAIRWISE_THRESHOLD, str(DEFAULT_PAIRWISE_THRESHOLD)), DEFAULT_PAIRWISE_THRESHOLD) MAX_STUCK_IN_SECONDS = convertStrToInt(os.environ.get('MAX_STUCK_IN_SECONDS', str(DEFAULT_MAX_STUCK_IN_SECONDS)), DEFAULT_MAX_STUCK_IN_SECONDS) min_historical_data_points = convertStrToInt(os.environ.get('MIN_HISTORICAL_DATA_POINT_TO_MEASURE', str(DEFAULT_MIN_HISTORICAL_DATA_POINT_TO_MEASURE)), DEFAULT_MIN_HISTORICAL_DATA_POINT_TO_MEASURE) es_url_status_search=buildElasticSearchUrl(ES_ENDPOINT, ES_INDEX) es_url_status_update=buildElasticSearchUrl(ES_ENDPOINT, ES_INDEX, isSearch=False) # Start up the server to expose the metrics. start_http_server(8000) #measurementMetric= measurementmetrics() label_info = {'jobId':'','calcuHistorical':'False','hasCurrent':'True'} MONITORING_REQUEST_TIME = "request_process_time" while True: resp='' modelHolder = None threshold = ML_THRESHOLD lower_threshold = ML_LOWER_THRESHOLD resp = searchByStatuslist(es_url_status_search, REQUEST_STATE.INITIAL.value ,REQUEST_STATE.PREPROCESS_COMPLETED.value) openRequestlist=parseResult(resp) openRequest =selectRequestToProcess(openRequestlist) if openRequest == None : #process stucked preprogress_inprogress event. resp = searchByStatus(es_url_status_search, REQUEST_STATE.PREPROCESS_INPROGRESS.value, MAX_STUCK_IN_SECONDS) openRequestlist=parseResult(resp) openRequest = selectRequestToProcess(openRequestlist) if openRequest == None: openRequest, modelHolder = retrieveCachedRequest(es_url_status_search) openRequestlist=parseResult(resp) openRequest = selectRequestToProcess(openRequestlist) if openRequest == None : logger.warning("No long running preprocess job found .....") time.sleep(1) continue #Test Start######################## ''' id='719a1a711bcaa94fff9677b9c0e24bcee67ec27ac67b57532316a3f8a37a8649' openRequest = retrieveRequestById(es_url_status_search, id) if (openRequest==None): print("es is down, will sleep and retry") time.sleep(1) continue ''' #Test End########################## else: uuid = openRequest['id'] openRequest_tmp, modelHolder = retrieveOneCachedRequest(es_url_status_search,uuid) outputMsg = [] uuid = openRequest['id'] status = openRequest['status'] #updatedStatus = reserveJob(es_url_status_update, uuid, status) updatedStatus = reserveJob(es_url_status_update,es_url_status_search, uuid,status) logger.warning("Start to processing job id "+uuid+ " original status:"+ status) historicalConfig =openRequest['historicalConfig'] currentConfig = openRequest['currentConfig'] baselineConfig = None if 'baselineConfig' in openRequest: baselineConfig = openRequest['baselineConfig'] historicalMetricStore= None if ('historicalMetricStore' in openRequest): historicalMetricStore =openRequest['historicalMetricStore'] currentMetricStore = None if ('currentMetricStore' in openRequest): currentMetricStore = openRequest['currentMetricStore'] baselineMetricStore = None if 'baselineMetricStore' in openRequest: baselineMetricStore = openRequest['baselineMetricStore'] startTime = openRequest['startTime'] endTime = openRequest['endTime'] #strategy strategy = openRequest['strategy'] skipHistorical =( historicalConfig=='') or (strategy == 'canary') # only canary deploymebnt requires baseline skipBaseline = strategy != 'canary' label_info['jobId']= uuid label_info['calcuHistorical']='False' label_info['hasCurrent']='False' start = time.time() #Need to be removed below line due to baseline is enabled at upstream #skipBaseline = True skipCurrent = (currentConfig=='') try: if (skipCurrent): ret = updateESDocStatus(es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.COMPLETED_UNKNOWN.value, "Error: no current config") logger.warning("request error : jobid "+uuid+" updateESDocStatus is :"+ str(ret)+ " current config is empty. make status unknown") #print(getNowStr(), " : jobid ",uuid, " current config is empty. make status unknown") #measurementmetrics.sendMetric(MONITORING_REQUEST_TIME, label_info, calculateDuration(start)) continue #dict metric name : url , if modelHolder does not have model, give chance to recalculate if modelHolder == None: modelConfig = {THRESHOLD : threshold,LOWER_THRESHOLD : lower_threshold, MIN_DATA_POINTS:min_historical_data_points, BOUND: ML_BOUND, PAIRWISE_ALGORITHM:ML_PAIRWISE_ALGORITHM,PAIRWISE_THRESHOLD:ML_PAIRWISE_THRESHOLD} modelHolder = ModelHolder(ML_ALGORITHM,modelConfig,{}, METRIC_PERIOD.HISTORICAL.value, uuid) if (not (modelHolder.hasModels or skipHistorical) ): configMapHistorical = convertStringToMap(historicalConfig) storeMapHistorical = convertStringToMap(historicalMetricStore) isProphet = False if (ML_ALGORITHM==AI_MODEL.PROPHET.value): isProphet=True modelConfig.setdefault(PROPHET_PERIOD, ML_PROPHET_PERIOD ) modelConfig.setdefault(PROPHET_FREQ,ML_PROPHET_FREQ ) # pass stragegy for hpa modelHolder, msg = computeHistoricalModel(configMapHistorical, modelHolder, isProphet,storeMapHistorical, strategy) label_info['calcuHistorical'] ='True' if (msg!=''): outputMsg.append(msg) if (not modelHolder.hasModels): outputMsg.append("No historical Data and model ") #print(getNowStr(), ": Warning: No historical: "+str(modelHolder)) hasHistorical = modelHolder.hasModels #start baseline to_do = [] currentDataSet={} baselineDataSet={} if skipBaseline : currentDataSet, p = computeNonHistoricalModel(convertStringToMap(currentConfig), METRIC_PERIOD.CURRENT.value,convertStringToMap(currentMetricStore), strategy); else: with ProcessPoolExecutor(max_workers=2) as executor: currentjob = executor.submit(computeNonHistoricalModel, convertStringToMap(currentConfig),METRIC_PERIOD.CURRENT.value,convertStringToMap(currentMetricStore), strategy); baselinejob = executor.submit(computeNonHistoricalModel, convertStringToMap(baselineConfig), METRIC_PERIOD.BASELINE.value,convertStringToMap(baselineMetricStore), strategy); to_do.append(currentjob) to_do.append(baselinejob) for future in futures.as_completed(to_do): try: res = future.result() if (res[1]== METRIC_PERIOD.CURRENT.value): currentDataSet = res[0] else: baselineDataSet = res[0] except Exception as e: logger.error("job id"+ uuid+ " encount errorProcessPoolExecutor " +str(e)) #This is used for canary deployment to comarsion how close baseline and current currentLen = len(currentDataSet) baselineLen= len(baselineDataSet) hasCurrent = currentLen>0 label_info['hasCurrent'] =hasCurrent hasBaseline = baselineLen>0 logger.warning("jobid:"+ uuid +" hasCurrent "+ str(hasCurrent)+", hasBaseline "+ str(hasBaseline) ) if hasCurrent == False: ret = True if isPast(endTime, 20): ret = updateESDocStatus(es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.COMPLETED_UNKNOWN.value, "Error: there is no current Metric. ") logger.warning("Current metric is empty, jobid "+uuid+" updateESDocStatus is :"+ str(ret)+ " time past mark job unknow "+ currentConfig+" ".join(outputMsg)) else: cacheModels(modelHolder, max_cache) ret =updateESDocStatus(es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.PREPROCESS_INPROGRESS.value, "Warning: there is no current Metric, Will keep try until reachs endTime. ") logger.warning("Current metric is empty, jobid "+uuid+" updateESDocStatus is :"+ str(ret)+ " end time is not reach, will cache and retry "+ currentConfig+" ".join(outputMsg)) if not ret: cacheModels( modelHolder, max_cache) logger.error("ES update failed: job ID: "+uuid) #measurementMetric.sendMetric(MONITORING_REQUEST_TIME, label_info, calculateDuration(start)) continue if (hasBaseline): hasSameDistribution, detailedResults, meetSize = pairWiseComparson (currentDataSet, baselineDataSet, ML_PAIRWISE_ALGORITHM, ML_PAIRWISE_THRESHOLD, ML_BOUND) ret = True if (not hasSameDistribution): logger.warning("current and base line does not have same distribution "+str(detailedResults)+" ".join(outputMsg)) ''' if hasHistorical == True: if meetSize : updateESDocStatus(es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.COMPLETED_UNHEALTH , "baseline and current are different pattern. "+escapeString(''.join(outputMsg))) continue requireLowerThreshold = True else: ''' if meetSize : ret = updateESDocStatus(es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.COMPLETED_UNHEALTH , "Warning: baseline and current are different pattern. ") logger.warning("job id :"+uuid+"completed_unhealth, current and baseline has different distribution pattern, updateESDocStatus is :"+ str(ret)) else: if isPast(endTime, 10): ret = updateESDocStatus(es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.COMPLETED_UNKNOWN.value, "Warning: baseline and current are different pattern but not meet min datapoints to determine . ") logger.warning("job id :"+uuid+"completed_unknown...current or baseline is not same but not enough datapoints to confirm, updateESDocStatus is :"+ str(ret)) else: ret = updateESDocStatus(es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.PREPROCESS_COMPLETED.value, " pairwise not same so far and not meet min datapoints to determine.") logger.warning("job id :"+uuid+" pairwise not same and not enough datapoints but not meet min datapoint to determine , updateESDocStatus is :"+ str(ret)) else: if isPast(endTime, 10): ret = updateESDocStatus(es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.COMPLETED_HEALTH.value, 'health') logger.warning("job ID : "+uuid+" is health. updateESDocStatus is :"+ str(ret)) else: ret = updateESDocStatus(es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.PREPROCESS_COMPLETED.value , " current and baseline have same distribution but not past endtime yet. ") # print(getNowStr(),": id ",uuid, " continue . bacause pairwise is not same but not past endTime yet " ) logger.warning("job id :"+uuid+" will reprocess . current and base have same distribution but not past endTime yet, updateESDocStatus is :"+ str(ret)) if not ret: cacheModels( modelHolder, max_cache) logger.error("ES update failed: job ID: "+uuid) #measurementMetric.sendMetric(MONITORING_REQUEST_TIME, label_info, calculateDuration(start)) continue else: #no baseline metric but require baseline then wait or reach end time to mark as unknown if not skipBaseline : ret = True if isPast(endTime, 10): ret =updateESDocStatus(es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.COMPLETED_UNKNOWN.value, "baseline query is empty. ") logger.warning("job ID : "+uuid+" unknown because baseline no data, updateESDocStatus is :"+ str(ret)) else: # wait for baseline metric to generate ret = updateESDocStatus(es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.PREPROCESS_COMPLETED.value , " no baseline data yet, ") logger.warning("job ID : "+uuid+" continue . no baseline data yet. updateESDocStatus is :"+ str(ret)) if not ret: cacheModels( modelHolder, max_cache) logger.error("ES update failed: job ID: "+uuid) #measurementMetric.sendMetric(MONITORING_REQUEST_TIME, label_info, calculateDuration(start)) continue #check historical (we may need to fail fast for non histrical netric use case #:TODO if hasHistorical == False : ret = True if isPast(endTime, 5): ret = updateESDocStatus(es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.COMPLETED_UNKNOWN.value, "Error: no enough historical data and no baseline data. ") logger.warning("job id: "+uuid+" completed unknown no enough historical data and no baseline data , updateESDocStatus is :"+ str(ret)) else: ret = updateESDocStatus(es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.PREPROCESS_COMPLETED.value, "Warning: not enough historical data and no baseline data will retry until endtime reaches. ") logger.warning("job id: "+uuid+" will cache and reprocess becasue no historical, updateESDocStatus is :"+ str(ret)) if not ret: cacheModels( modelHolder, max_cache) logger.error("ES update failed: job ID: "+uuid) #measurementMetric.sendMetric(MONITORING_REQUEST_TIME, label_info, calculateDuration(start)) continue if strategy ==HPA: computeAnomaly(currentDataSet,modelHolder,strategy) if isPast(endTime, 5): ret = updateESDocStatus(es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.COMPLETED_HEALTH.value, "") logger.warning("job id: "+uuid+" hpa cycle completed.") else: ret = updateESDocStatus(es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.PREPROCESS_INPROGRESS.value, "") logger.warning("job id: "+uuid+" hpa in progress.") if not ret: cacheModels( modelHolder, max_cache) logger.error("ES update failed: hpa job ID: "+uuid) #measurementMetric.sendMetric(MONITORING_REQUEST_TIME, label_info, calculateDuration(start)) continue #add strategy hasAnomaly, anomaliesDataStr = computeAnomaly(currentDataSet,modelHolder,strategy) logger.warning("job ID is "+uuid+" hasAnomaly is "+str(hasAnomaly) ) if hasAnomaly: #update ES to anomaly otherwise continue anomalyInfo = escapeString(anomaliesDataStr) ret = updateESDocStatus(es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.COMPLETED_UNHEALTH.value , "Warning: anomaly detected between current and historical. ",anomalyInfo) logger.warning("**job ID is unhealth "+uuid+" updateESDocStatus is :"+ str(ret)+ " "+anomaliesDataStr) if not ret: cacheModels( modelHolder, max_cache) logger.error("ES update failed: job ID: "+uuid) else: if isPast(endTime, 10): ret = updateESDocStatus(es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.COMPLETED_HEALTH.value,"current compare to histroical model is health") logger.warning("job ID: "+uuid+" is health, updateESDocStatus is :"+ str(ret)) if not ret: cacheModels( modelHolder, max_cache) logger.error("ES update failed: job ID: "+uuid) else: cacheModels( modelHolder, max_cache) ret = updateESDocStatus(es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.PREPROCESS_INPROGRESS.value, "Need to continuous to check untile reachs deployment endTime. ") logger.warning("job ID : "+uuid+" health so far will reprocess updateESDocStatus is :"+ str(ret)) #measurementMetric.sendMetric(MONITORING_REQUEST_TIME, label_info, calculateDuration(start)) except Exception as e: logger.error("uuid : "+ uuid+" failed because ",e ) try: if isPast(endTime, 5): updateESDocStatus(es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.PREPROCESS_FAILED.value,"Critical: encount code exception. "+escapeString(''.join(outputMsg))) else: updateESDocStatus(es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.PREPROCESS_COMPLETED.value,"Critical: encount code exception. "+escapeString(''.join(outputMsg))) except Exception as ee: logger.error("uuid : "+ uuid+" failed because "+str(ee) ) continue
def main(): #Default Parameters can be overwrite by environments max_cache = convertStrToInt( os.environ.get("MAX_CACHE_SIZE", str(MAX_CACHE_SIZE)), MAX_CACHE_SIZE) ES_ENDPOINT = os.environ.get( 'ES_ENDPOINT', 'http://elasticsearch-discovery-service.foremast.svc.cluster.local:9200' ) #cache= os.environ.get('ENABLE_CACHE', DEFAULT_ENABLE_CACHE) #enableCache = False #if cache=='': # enableCache = True ML_ALGORITHM = os.environ.get('ML_ALGORITHM', AI_MODEL.MOVING_AVERAGE_ALL.value) #ML_ALGORITHM= AI_MODEL.EXPONENTIAL_SMOOTHING.value #ML_ALGORITHM= AI_MODEL.DOUBLE_EXPONENTIAL_SMOOTHING.value #prophet algm parameters start #ML_ALGORITHM = AI_MODEL.PROPHET.value MIN_MANN_WHITE_DATA_POINTS = convertStrToInt( os.environ.get("MIN_MANN_WHITE_DATA_POINTS", str(MANN_WHITE_MIN_DATA_POINT)), MANN_WHITE_MIN_DATA_POINT) MIN_WILCOXON_DATA_POINTS = convertStrToInt( os.environ.get("MIN_WILCOXON_DATA_POINTS", str(WILCOXON_MIN_DATA_POINTS)), WILCOXON_MIN_DATA_POINTS) MIN_KRUSKAL_DATA_POINTS = convertStrToInt( os.environ.get("MIN_KRUSKAL_DATA_POINTS", str(KRUSKAL_MIN_DATA_POINTS)), KRUSKAL_MIN_DATA_POINTS) ML_THRESHOLD = convertStrToFloat( os.environ.get(THRESHOLD, str(DEFAULT_THRESHOLD)), DEFAULT_THRESHOLD) #lower threshold is for warning. ML_LOWER_THRESHOLD = convertStrToFloat( os.environ.get(LOWER_THRESHOLD, str(DEFAULT_LOWER_THRESHOLD)), DEFAULT_LOWER_THRESHOLD) ML_BOUND = convertStrToInt(os.environ.get(BOUND, str(IS_UPPER_BOUND)), IS_UPPER_BOUND) ML_MIN_LOWER_BOUND = convertStrToFloat( os.environ.get(MIN_LOWER_BOUND, str(DEFAULT_MIN_LOWER_BOUND)), DEFAULT_MIN_LOWER_BOUND) # this is for pairwise algorithem which is used for canary deployment anomaly detetion. config.setKV("MIN_MANN_WHITE_DATA_POINTS", MIN_MANN_WHITE_DATA_POINTS) config.setKV("MIN_WILCOXON_DATA_POINTS", MIN_WILCOXON_DATA_POINTS) config.setKV("MIN_KRUSKAL_DATA_POINTS", MIN_KRUSKAL_DATA_POINTS) config.setKV(THRESHOLD, ML_THRESHOLD) config.setKV(BOUND, ML_BOUND) config.setKV(MIN_LOWER_BOUND, ML_MIN_LOWER_BOUND) wavefrontEndpoint = os.environ.get('WAVEFRONT_ENDPOINT', "https://intuit.wavefront.com") wavefrontToken = os.environ.get('WAVEFRONT_TOKEN', "06258b32-5ada-4485-8e78-886faf7a938b") config.setKV('WAVEFRONT_ENDPOINT', wavefrontEndpoint) config.setKV('WAVEFRONT_TOKEN', wavefrontToken) #os.environ[METRIC_TYPE_THRESHOLD_COUNT]='1' #os.environ[THRESHOLD+'0']='3' #os.environ[BOUND+'0']=str(IS_UPPER_BOUND) #os.environ[MIN_LOWER_BOUND+'0']=str(DEFAULT_MIN_LOWER_BOUND) #os.environ[METRIC_TYPE+'0']='error5xx' metric_threshold_count = convertStrToInt( os.environ.get(METRIC_TYPE_THRESHOLD_COUNT, -1), METRIC_TYPE_THRESHOLD_COUNT) if metric_threshold_count >= 0: for i in range(metric_threshold_count): istr = str(i) mtype = os.environ.get(METRIC_TYPE + istr, '') if mtype != '': mthreshold = convertStrToFloat( os.environ.get(THRESHOLD + istr, str(ML_THRESHOLD)), ML_THRESHOLD) mbound = convertStrToInt( os.environ.get(BOUND + istr, str(ML_BOUND)), ML_BOUND) mminlowerbound = convertStrToInt( os.environ.get(MIN_LOWER_BOUND + istr, str(ML_MIN_LOWER_BOUND)), ML_MIN_LOWER_BOUND) config.setThresholdKV(mtype, THRESHOLD, mthreshold) config.setThresholdKV(mtype, BOUND, mbound) config.setThresholdKV(mtype, MIN_LOWER_BOUND, mminlowerbound) #hpa config hpa_metric_count = convertStrToInt(os.environ.get("hpa_metric_count", -1), 1) if hpa_metric_count >= 0: for i in range(hpa_metric_count): istr = str(i) htype = os.environ.get("hpa_metric_type" + istr, '') if htype != '': hthreshold = convertStrToFloat( os.environ.get("hpa_threshold" + istr, "3"), 3) hbound = convertStrToInt( os.environ.get("hpa_bound" + istr, str(ML_BOUND)), ML_BOUND) hminlowerbound = convertStrToInt( os.environ.get("hpa_min_lower_bound" + istr, str('0')), 0) hweight = convertStrToFloat( os.environ.get("hpa_weight" + istr, "1"), 1) config.setThresholdKV(mtype, THRESHOLD, mthreshold) config.setThresholdKV(mtype, BOUND, mbound) config.setThresholdKV(mtype, MIN_LOWER_BOUND, mminlowerbound) ML_PROPHET_PERIOD = convertStrToInt( os.environ.get(PROPHET_PERIOD, str(DEFAULT_PROPHET_PERIOD)), DEFAULT_PROPHET_PERIOD) ML_PROPHET_FREQ = os.environ.get(PROPHET_FREQ, DEFAULT_PROPHET_FREQ) #prophet algm parameters end ML_PAIRWISE_ALGORITHM = os.environ.get(PAIRWISE_ALGORITHM, ALL) ML_PAIRWISE_THRESHOLD = convertStrToFloat( os.environ.get(PAIRWISE_THRESHOLD, str(DEFAULT_PAIRWISE_THRESHOLD)), DEFAULT_PAIRWISE_THRESHOLD) MAX_STUCK_IN_SECONDS = convertStrToInt( os.environ.get('MAX_STUCK_IN_SECONDS', str(DEFAULT_MAX_STUCK_IN_SECONDS)), DEFAULT_MAX_STUCK_IN_SECONDS) min_historical_data_points = convertStrToInt( os.environ.get('MIN_HISTORICAL_DATA_POINT_TO_MEASURE', str(DEFAULT_MIN_HISTORICAL_DATA_POINT_TO_MEASURE)), DEFAULT_MIN_HISTORICAL_DATA_POINT_TO_MEASURE) es_url_status_search = buildElasticSearchUrl(ES_ENDPOINT, ES_INDEX) es_url_status_update = buildElasticSearchUrl(ES_ENDPOINT, ES_INDEX, isSearch=False) # Start up the server to expose the metrics. start_http_server(8000) measurementMetric = measurementmetrics() label_info = { 'jobId': '', 'calcuHistorical': 'False', 'hasCurrent': 'True' } MONITORING_REQUEST_TIME = "request_process_time" while True: resp = '' modelHolder = None threshold = ML_THRESHOLD lower_threshold = ML_LOWER_THRESHOLD resp = searchByStatuslist(es_url_status_search, REQUEST_STATE.INITIAL.value, REQUEST_STATE.PREPROCESS_COMPLETED.value) #resp = searchByStatuslist(es_url_status_search, REQUEST_STATE.COMPLETED_UNHEALTH.value, REQUEST_STATE.COMPLETED_HEALTH.value, # REQUEST_STATE.COMPLETED_UNKNOWN.value) openRequestlist = parseResult(resp) openRequest = selectRequestToProcess(openRequestlist) if openRequest == None: #process stucked preprogress_inprogress event. resp = searchByStatus(es_url_status_search, REQUEST_STATE.PREPROCESS_INPROGRESS.value, MAX_STUCK_IN_SECONDS) openRequestlist = parseResult(resp) openRequest = selectRequestToProcess(openRequestlist) if openRequest == None: openRequest, modelHolder = retrieveCachedRequest( es_url_status_search) openRequestlist = parseResult(resp) openRequest = selectRequestToProcess(openRequestlist) if openRequest == None: logger.warning( "No long running preprocess job found .....") time.sleep(1) continue #Test Start######################## ''' id ='35aa7789aa7e6176c975c7a3c1c51c1e7572ec7a2d83ee953f8306618949eb74' openRequest = retrieveRequestById(es_url_status_search, id) if (openRequest==None): print("es is down, will sleep and retry") time.sleep(1) continue ''' #Test End########################## else: uuid = openRequest['id'] openRequest_tmp, modelHolder = retrieveOneCachedRequest( es_url_status_search, uuid) outputMsg = [] uuid = openRequest['id'] status = openRequest['status'] #updatedStatus = reserveJob(es_url_status_update, uuid, status) updatedStatus = reserveJob(es_url_status_update, es_url_status_search, uuid, status) logger.warning("Start to processing job id " + uuid + " original status:" + status) #print(getNowStr(), ": start to processing uuid ..... ",uuid," status:", status) historicalConfig = openRequest['historicalConfig'] currentConfig = openRequest['currentConfig'] baselineConfig = openRequest['baselineConfig'] historicalMetricStore = openRequest['historicalMetricStore'] currentMetricStore = openRequest['currentMetricStore'] baselineMetricStore = openRequest['baselineMetricStore'] startTime = openRequest['startTime'] endTime = openRequest['endTime'] strategy = openRequest['strategy'] skipHistorical = (historicalConfig == '') or (strategy == 'canary') skipBaseline = (baselineConfig == '') or (strategy != 'canary') label_info['jobId'] = uuid label_info['calcuHistorical'] = 'False' label_info['hasCurrent'] = 'False' start = time.time() #Need to be removed below line due to baseline is enabled at upstream #skipBaseline = True skipCurrent = (currentConfig == '') try: if (skipCurrent): ret = updateESDocStatus(es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.COMPLETED_UNKNOWN.value, "Error: no current config") logger.warning("request error : jobid " + uuid + " updateESDocStatus is :" + str(ret) + " current config is empty. make status unknown") #print(getNowStr(), " : jobid ",uuid, " current config is empty. make status unknown") measurementmetrics.sendMetric(MONITORING_REQUEST_TIME, label_info, calculateDuration(start)) continue #dict metric name : url , if modelHolder does not have model, give chance to recalculate if modelHolder == None: modelConfig = { THRESHOLD: threshold, LOWER_THRESHOLD: lower_threshold, MIN_DATA_POINTS: min_historical_data_points, BOUND: ML_BOUND, PAIRWISE_ALGORITHM: ML_PAIRWISE_ALGORITHM, PAIRWISE_THRESHOLD: ML_PAIRWISE_THRESHOLD } modelHolder = ModelHolder(ML_ALGORITHM, modelConfig, {}, METRIC_PERIOD.HISTORICAL.value, uuid) if (not (modelHolder.hasModels or skipHistorical)): configMapHistorical = convertStringToMap(historicalConfig) storeMapHistorical = convertStringToMap(historicalMetricStore) isProphet = False if (ML_ALGORITHM == AI_MODEL.PROPHET.value): isProphet = True modelConfig.setdefault(PROPHET_PERIOD, ML_PROPHET_PERIOD) modelConfig.setdefault(PROPHET_FREQ, ML_PROPHET_FREQ) modelHolder, msg = computeHistoricalModel( configMapHistorical, modelHolder, isProphet, storeMapHistorical) label_info['calcuHistorical'] = 'True' if (msg != ''): outputMsg.append(msg) if (not modelHolder.hasModels): outputMsg.append("No historical Data and model ") #print(getNowStr(), ": Warning: No historical: "+str(modelHolder)) hasHistorical = modelHolder.hasModels #start baseline to_do = [] currentDataSet = {} baselineDataSet = {} if skipBaseline: currentDataSet, p = computeNonHistoricalModel( convertStringToMap(currentConfig), METRIC_PERIOD.CURRENT.value, convertStringToMap(currentMetricStore)) else: with ProcessPoolExecutor(max_workers=2) as executor: currentjob = executor.submit( computeNonHistoricalModel, convertStringToMap(currentConfig), METRIC_PERIOD.CURRENT.value, convertStringToMap(currentMetricStore)) baselinejob = executor.submit( computeNonHistoricalModel, convertStringToMap(baselineConfig), METRIC_PERIOD.BASELINE.value, convertStringToMap(baselineMetricStore)) to_do.append(currentjob) to_do.append(baselinejob) for future in futures.as_completed(to_do): try: res = future.result() if (res[1] == METRIC_PERIOD.CURRENT.value): currentDataSet = res[0] else: baselineDataSet = res[0] except Exception as e: logger.error("job id" + uuid + " encount errorProcessPoolExecutor " + str(e)) #This is used for canary deployment to comarsion how close baseline and current currentLen = len(currentDataSet) baselineLen = len(baselineDataSet) hasCurrent = currentLen > 0 label_info['hasCurrent'] = hasCurrent hasBaseline = baselineLen > 0 logger.warning("jobid:" + uuid + " hasCurrent " + str(hasCurrent) + ", hasBaseline " + str(hasBaseline)) #print(getNowStr(), ": hasCurrent, hasBaseline ", str(hasCurrent), str(hasBaseline)," id ",uuid , " skip bseline is ", skipBaseline) if hasCurrent == False: ret = True if isPast(endTime, 20): ret = updateESDocStatus( es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.COMPLETED_UNKNOWN.value, "Error: there is no current Metric. ") logger.warning("Current metric is empty, jobid " + uuid + " updateESDocStatus is :" + str(ret) + " time past mark job unknow " + currentConfig + " ".join(outputMsg)) else: cacheModels(modelHolder, max_cache) ret = updateESDocStatus( es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.PREPROCESS_INPROGRESS.value, "Warning: there is no current Metric, Will keep try until reachs endTime. " ) # print(getNowStr(), ": no current metric is not ready, jobid ",uuid," ", currentConfig) logger.warning( "Current metric is empty, jobid " + uuid + " updateESDocStatus is :" + str(ret) + " end time is not reach, will cache and retry " + currentConfig + " ".join(outputMsg)) if not ret: cacheModels(modelHolder, max_cache) logger.error("ES update failed: job ID: " + uuid) measurementMetric.sendMetric(MONITORING_REQUEST_TIME, label_info, calculateDuration(start)) continue if (hasBaseline): hasSameDistribution, detailedResults, meetSize = pairWiseComparson( currentDataSet, baselineDataSet, ML_PAIRWISE_ALGORITHM, ML_PAIRWISE_THRESHOLD, ML_BOUND) ret = True if (not hasSameDistribution): logger.warning( "current and base line does not have same distribution " + str(detailedResults) + " ".join(outputMsg)) ''' if hasHistorical == True: if meetSize : updateESDocStatus(es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.COMPLETED_UNHEALTH , "baseline and current are different pattern. "+escapeString(''.join(outputMsg))) continue requireLowerThreshold = True else: ''' if meetSize: ret = updateESDocStatus( es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.COMPLETED_UNHEALTH, "Warning: baseline and current are different pattern. " ) #print(getNowStr(),": id ",uuid, " completed_unhealth... bacause pairwise is not same" ) logger.warning( "job id :" + uuid + "completed_unhealth, current and baseline has different distribution pattern, updateESDocStatus is :" + str(ret)) else: if isPast(endTime, 10): ret = updateESDocStatus( es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.COMPLETED_UNKNOWN.value, "Warning: baseline and current are different pattern but not meet min datapoints to determine . " ) #print(getNowStr(),": id ",uuid, " completed_unknown... bacause pairwise is not same but not enough datapoints " ) logger.warning( "job id :" + uuid + "completed_unknown...current or baseline is not same but not enough datapoints to confirm, updateESDocStatus is :" + str(ret)) else: ret = updateESDocStatus( es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.PREPROCESS_COMPLETED.value, " pairwise not same so far and not meet min datapoints to determine." ) #print(getNowStr(),": id ",uuid, " bacause pairwise is not same and not enough datapoint " ) logger.warning( "job id :" + uuid + " pairwise not same and not enough datapoints but not meet min datapoint to determine , updateESDocStatus is :" + str(ret)) else: if isPast(endTime, 10): ret = updateESDocStatus( es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.COMPLETED_HEALTH.value, 'health') logger.warning("job ID : " + uuid + " is health. updateESDocStatus is :" + str(ret)) #print(getNowStr(),": id ",uuid, "mark as health....") else: ret = updateESDocStatus( es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.PREPROCESS_COMPLETED.value, " current and baseline have same distribution but not past endtime yet. " ) # print(getNowStr(),": id ",uuid, " continue . bacause pairwise is not same but not past endTime yet " ) logger.warning( "job id :" + uuid + " will reprocess . current and base have same distribution but not past endTime yet, updateESDocStatus is :" + str(ret)) if not ret: cacheModels(modelHolder, max_cache) logger.error("ES update failed: job ID: " + uuid) measurementMetric.sendMetric(MONITORING_REQUEST_TIME, label_info, calculateDuration(start)) continue else: if not skipBaseline: ret = True if isPast(endTime, 10): ret = updateESDocStatus( es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.COMPLETED_UNKNOWN.value, "baseline query is empty. ") logger.warning( "job ID : " + uuid + " unknown because baseline no data, updateESDocStatus is :" + str(ret)) else: ret = updateESDocStatus( es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.PREPROCESS_COMPLETED.value, " no baseline data yet, ") # print(getNowStr(),": id ",uuid, " continue . no baseline data yet. " ) logger.warning( "job ID : " + uuid + " continue . no baseline data yet. updateESDocStatus is :" + str(ret)) if not ret: cacheModels(modelHolder, max_cache) logger.error("ES update failed: job ID: " + uuid) measurementMetric.sendMetric(MONITORING_REQUEST_TIME, label_info, calculateDuration(start)) continue #check historical and baseline if hasHistorical == False: ret = True if isPast(endTime, 5): ret = updateESDocStatus( es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.COMPLETED_UNKNOWN.value, "Error: no enough historical data and no baseline data. " ) logger.warning( "job id: " + uuid + " completed unknown no enough historical data and no baseline data , updateESDocStatus is :" + str(ret)) else: ret = updateESDocStatus( es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.PREPROCESS_COMPLETED.value, "Warning: not enough historical data and no baseline data will retry until endtime reaches. " ) #print(getNowStr(),": id ",uuid, " will reprocess because no historical.. " ) logger.warning( "job id: " + uuid + " will cache and reprocess becasue no historical, updateESDocStatus is :" + str(ret)) if not ret: cacheModels(modelHolder, max_cache) logger.error("ES update failed: job ID: " + uuid) measurementMetric.sendMetric(MONITORING_REQUEST_TIME, label_info, calculateDuration(start)) continue hasAnomaly, anomaliesDataStr = computeAnomaly( currentDataSet, modelHolder) logger.warning("job ID is " + uuid + " hasAnomaly is " + str(hasAnomaly)) if hasAnomaly: #update ES to anomaly otherwise continue anomalyInfo = escapeString(anomaliesDataStr) ret = updateESDocStatus( es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.COMPLETED_UNHEALTH.value, "Warning: anomaly detected between current and historical. ", anomalyInfo) #print(getNowStr(),"job ID is ",uuid, " mark unhealth anomalies data is ", anomalyInfo) logger.warning("**job ID is unhealth " + uuid + " updateESDocStatus is :" + str(ret) + " " + anomaliesDataStr) if not ret: cacheModels(modelHolder, max_cache) logger.error("ES update failed: job ID: " + uuid) else: if isPast(endTime, 10): ret = updateESDocStatus( es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.COMPLETED_HEALTH.value, "current compare to histroical model is health") logger.warning("job ID: " + uuid + " is health, updateESDocStatus is :" + str(ret)) if not ret: cacheModels(modelHolder, max_cache) logger.error("ES update failed: job ID: " + uuid) #print(getNowStr(),"job ID is ",uuid, " mark as health....") else: cacheModels(modelHolder, max_cache) ret = updateESDocStatus( es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.PREPROCESS_INPROGRESS.value, "Need to continuous to check untile reachs deployment endTime. " ) logger.warning( "job ID : " + uuid + " health so far will reprocess updateESDocStatus is :" + str(ret)) measurementMetric.sendMetric(MONITORING_REQUEST_TIME, label_info, calculateDuration(start)) except Exception as e: #print("uuid ",uuid, " error :",str(e)) logger.error("uuid : " + uuid + " failed because ", e) #print(getNowStr(),"job ID is ",uuid, " critical error encounted ", str(e)) try: if isPast(endTime, 5): updateESDocStatus( es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.PREPROCESS_FAILED.value, "Critical: encount code exception. " + escapeString(''.join(outputMsg))) else: updateESDocStatus( es_url_status_update, es_url_status_search, uuid, REQUEST_STATE.PREPROCESS_COMPLETED.value, "Critical: encount code exception. " + escapeString(''.join(outputMsg))) except Exception as ee: #print(getNowStr(),"job ID is ",uuid, " critical error encounted +str(ee) ) logger.error("uuid : " + uuid + " failed because " + str(ee)) continue
from utils.timeutils import isPast, canProcess, rateLimitCheck, getNow, getNowInSeconds from dateutil.parser import parse print(getNowInSeconds()) date1 = '2018-11-09T15:55:35-08:00' date2 = '2018-11-09T15:58:35-08:00' date4 = '2018-11-13T21:55:23Z' date3 = '2018-11-13T21:45:23Z ' print(isPast(date1, 60 * 20)) print(canProcess(date1, date2)) print(canProcess(date3, date4)) dd = "2018-11-13T16:29:06.429143-08:00" rateLimitCheck(dd, past=10) print(parse(str(getNow())))
def main(): # Default Parameters can be overwrite by environments max_cache = convertStrToInt( os.environ.get("MAX_CACHE_SIZE", str(MAX_CACHE_SIZE)), MAX_CACHE_SIZE) ML_ALGORITHM = os.environ.get('ML_ALGORITHM', AI_MODEL.MOVING_AVERAGE_ALL.value) FLUSH_FREQUENCY = os.environ.get('FLUSH_FREQUENCY', 5) OIM_BUCKET = os.environ.get("OIM_BUCKET") # get historical time window HISTORICAL_CONF_TIME_WINDOW = os.environ.get('HISTORICAL_CONF_TIME_WINDOW', 7 * 24 * 60 * 60) CURRENT_CONF_TIME_WINDOW = os.environ.get('CURRENT_CONF_TIME_WINDOW', 1.75) CURRENT_CONF_POD_TIME_WINDOW = os.environ.get('CURRENT_CONF_TIME_WINDOW', 5.75) MIN_MANN_WHITE_DATA_POINTS = convertStrToInt( os.environ.get("MIN_MANN_WHITE_DATA_POINTS", str(MANN_WHITE_MIN_DATA_POINT)), MANN_WHITE_MIN_DATA_POINT) MIN_WILCOXON_DATA_POINTS = convertStrToInt( os.environ.get("MIN_WILCOXON_DATA_POINTS", str(WILCOXON_MIN_DATA_POINTS)), WILCOXON_MIN_DATA_POINTS) MIN_KRUSKAL_DATA_POINTS = convertStrToInt( os.environ.get("MIN_KRUSKAL_DATA_POINTS", str(KRUSKAL_MIN_DATA_POINTS)), KRUSKAL_MIN_DATA_POINTS) #ML_THRESHOLD = convertStrToFloat(os.environ.get(THRESHOLD, str(DEFAULT_THRESHOLD)), DEFAULT_THRESHOLD) # lower threshold is for warning. #ML_LOWER_THRESHOLD = convertStrToFloat(os.environ.get(LOWER_THRESHOLD, str(DEFAULT_LOWER_THRESHOLD)), # DEFAULT_LOWER_THRESHOLD) ML_THRESHOLD = convertStrToFloat( os.environ.get(THRESHOLD, str(0.8416212335729143)), 0.8416212335729143) ML_LOWER_THRESHOLD = convertStrToFloat( os.environ.get(LOWER_THRESHOLD, str(0.6744897501960817)), 0.6744897501960817) ML_BOUND = convertStrToInt(os.environ.get(BOUND, str(IS_UPPER_BOUND)), IS_UPPER_BOUND) ML_MIN_LOWER_BOUND = convertStrToFloat( os.environ.get(MIN_LOWER_BOUND, str(DEFAULT_MIN_LOWER_BOUND)), DEFAULT_MIN_LOWER_BOUND) # this is for pairwise algorithem which is used for canary deployment anomaly detetion. config.setKV("MIN_MANN_WHITE_DATA_POINTS", MIN_MANN_WHITE_DATA_POINTS) config.setKV("MIN_WILCOXON_DATA_POINTS", MIN_WILCOXON_DATA_POINTS) config.setKV("MIN_KRUSKAL_DATA_POINTS", MIN_KRUSKAL_DATA_POINTS) config.setKV(THRESHOLD, ML_THRESHOLD) config.setKV(BOUND, ML_BOUND) config.setKV(MIN_LOWER_BOUND, ML_MIN_LOWER_BOUND) config.setKV("FLUSH_FREQUENCY", int(FLUSH_FREQUENCY)) config.setKV("OIM_BUCKET", OIM_BUCKET) config.setKV("CACHE_EXPIRE_TIME", os.environ.get('CACHE_EXPIRE_TIME', 30 * 60)) config.setKV("REQ_CHECK_INTERVAL", int(os.environ.get('REQ_CHECK_INTERVAL', 45))) # Add Metric source env config.setKV("SOURCE_ENV", "ppd") MODE_DROP_ANOMALY = os.environ.get('MODE_DROP_ANOMALY', 'y') config.setKV('MODE_DROP_ANOMALY', MODE_DROP_ANOMALY) NO_MATCH_PICK_LAST = os.environ.get('NO_MATCH_PICK_LAST', 'y') config.setKV('NO_MATCH_PICK_LAST', NO_MATCH_PICK_LAST) wavefrontEndpoint = os.environ.get('WAVEFRONT_ENDPOINT') wavefrontToken = os.environ.get('WAVEFRONT_TOKEN') foremastEnv = os.environ.get("FOREMAST_ENV", 'qa') metricDestation = os.environ.get('METRIC_DESTINATION', "prometheus") if wavefrontEndpoint is not None: config.setKV('WAVEFRONT_ENDPOINT', wavefrontEndpoint) else: logger.error( "WAVEFRONT_ENDPOINT is null!!! foremat-brain will throw exception is you consumer wavefront metric..." ) if wavefrontToken is not None: config.setKV('WAVEFRONT_TOKEN', wavefrontToken) else: logger.error( "WAVEFRONT_TOKEN is null!!! foremat-brain will throw exception is you consumer wavefront metric..." ) if metricDestation is not None: config.setKV('METRIC_DESTINATION', metricDestation) else: config.setKV('METRIC_DESTINATION', "prometheus") if foremastEnv is None or foremastEnv == '': config.setKV("FOREMAST_ENV", 'qa') else: config.setKV("FOREMAST_ENV", foremastEnv) metric_threshold_count = convertStrToInt( os.environ.get(METRIC_TYPE_THRESHOLD_COUNT, -1), METRIC_TYPE_THRESHOLD_COUNT) if metric_threshold_count >= 0: for i in range(metric_threshold_count): istr = str(i) mtype = os.environ.get(METRIC_TYPE + istr, '') if mtype != '': mthreshold = convertStrToFloat( os.environ.get(THRESHOLD + istr, str(ML_THRESHOLD)), ML_THRESHOLD) mbound = convertStrToInt( os.environ.get(BOUND + istr, str(ML_BOUND)), ML_BOUND) mminlowerbound = convertStrToInt( os.environ.get(MIN_LOWER_BOUND + istr, str(ML_MIN_LOWER_BOUND)), ML_MIN_LOWER_BOUND) config.setThresholdKV(mtype, THRESHOLD, mthreshold) config.setThresholdKV(mtype, BOUND, mbound) config.setThresholdKV(mtype, MIN_LOWER_BOUND, mminlowerbound) ML_PROPHET_PERIOD = convertStrToInt( os.environ.get(PROPHET_PERIOD, str(DEFAULT_PROPHET_PERIOD)), DEFAULT_PROPHET_PERIOD) ML_PROPHET_FREQ = os.environ.get(PROPHET_FREQ, DEFAULT_PROPHET_FREQ) # prophet algm parameters end ML_PAIRWISE_ALGORITHM = os.environ.get(PAIRWISE_ALGORITHM, ALL) ML_PAIRWISE_THRESHOLD = convertStrToFloat( os.environ.get(PAIRWISE_THRESHOLD, str(DEFAULT_PAIRWISE_THRESHOLD)), DEFAULT_PAIRWISE_THRESHOLD) MAX_STUCK_IN_SECONDS = convertStrToInt( os.environ.get('MAX_STUCK_IN_SECONDS', str(DEFAULT_MAX_STUCK_IN_SECONDS)), DEFAULT_MAX_STUCK_IN_SECONDS) min_historical_data_points = convertStrToInt( os.environ.get('MIN_HISTORICAL_DATA_POINT_TO_MEASURE', str(DEFAULT_MIN_HISTORICAL_DATA_POINT_TO_MEASURE)), DEFAULT_MIN_HISTORICAL_DATA_POINT_TO_MEASURE) es = ESClient() # Start up the server to expose the metrics. start_http_server(8000) # measurementMetric= measurementmetrics() label_info = { 'jobId': '', 'calcuHistorical': 'False', 'hasCurrent': 'True' } MONITORING_REQUEST_TIME = "request_process_time" while True: resp = '' modelHolder = None threshold = ML_THRESHOLD lower_threshold = ML_LOWER_THRESHOLD resp = es.search_by_statuslist( REQUEST_STATE.INITIAL.value, REQUEST_STATE.PREPROCESS_COMPLETED.value) _, openRequestlist = es.parse_result(resp) openRequest = selectRequestToProcess(openRequestlist) if openRequest == None: # process stucked preprogress_inprogress event. resp = es.search_status_and_lastmodify( REQUEST_STATE.PREPROCESS_INPROGRESS.value, MAX_STUCK_IN_SECONDS) _, openRequestlist = es.parse_result(resp) openRequest = selectRequestToProcess(openRequestlist) if openRequest == None: openRequest, modelHolder = retrieveCachedRequest() if openRequest == None: #logger.warning("No long running preprocess job found .....") continue ''' # Test Start######################## id='3c100dba1da813e4e0be6ca07d88a5bbafe3ac8a0cacd58f1e8bcacfdb2119d1' openRequest = retrieveRequestById(id) if (openRequest==None): print("es is down, will sleep and retry") time.sleep(1) continue # Test End########################## ''' else: uuid = openRequest['id'] _, modelHolder = retrieveOneCachedRequest(uuid) outputMsg = [] uuid = openRequest['id'] status = openRequest['status'] updatedStatus = reserveJob(uuid, status) logger.warning("Start to processing job id " + uuid + " original status:" + status) #strategy strategy = openRequest['strategy'] start = time.time() historicalConfig = None historicalConfigMap = None historicalMetricStore = None if strategy not in [CANARY]: if 'historicalConfig' in openRequest: historicalConfig = openRequest['historicalConfig'] if historicalConfig != '': historicalConfigMap = convertStringToMap(historicalConfig) if ('historicalMetricStore' in openRequest): historicalMetricStore = openRequest[ 'historicalMetricStore'] #currentConfig should never null currentConfig = openRequest['currentConfig'] currentConfigMap = None currentMetricStore = None if currentConfig != '': currentConfigMap = convertStringToMap(currentConfig) if ('currentMetricStore' in openRequest): currentMetricStore = openRequest['currentMetricStore'] baselineConfig = None baselineConfigMap = None baselineMetricStore = None if strategy in [CANARY] and 'baselineConfig' in openRequest: baselineConfig = openRequest['baselineConfig'] if baselineConfig != '': baselineConfigMap = convertStringToMap(baselineConfig) if 'baselineMetricStore' in openRequest: baselineMetricStore = openRequest['baselineMetricStore'] skipHistorical = (historicalConfig == '') or (strategy == CANARY) # only canary deploymebnt requires baseline skipBaseline = strategy != CANARY #label_info['jobId']= uuid #label_info['calcuHistorical']='False' #label_info['hasCurrent']='False' endTime = openRequest['endTime'] #Need to be removed below line due to baseline is enabled at upstream skipCurrent = (currentConfig == '') persistModelConfig = False try: if (skipCurrent): #this should not pick up ret = update_es_doc(strategy, status, uuid, REQUEST_STATE.COMPLETED_UNKNOWN.value, "Error: no current config") logger.warning("request error : jobid " + uuid + " updateESDocStatus is :" + str(ret) + " current config is empty. make status unknown") #measurementmetrics.sendMetric(MONITORING_REQUEST_TIME, label_info, calculateDuration(start)) continue #dict metric name : url , if modelHolder does not have model, give chance to recalculate if modelHolder == None: modelConfig = loadModelConfig(uuid) if strategy == CANARY: if modelConfig is None: modelConfig = { PAIRWISE_ALGORITHM: ML_PAIRWISE_ALGORITHM, PAIRWISE_THRESHOLD: ML_PAIRWISE_THRESHOLD, BOUND: ML_BOUND } persistModelConfig = True modelHolder = ModelHolder(ML_PAIRWISE_ALGORITHM, modelConfig, {}, METRIC_PERIOD.BASELINE.value, uuid) else: if modelConfig is None: modelConfig = { THRESHOLD: threshold, LOWER_THRESHOLD: lower_threshold, MIN_DATA_POINTS: min_historical_data_points, BOUND: ML_BOUND, MIN_LOWER_BOUND: ML_MIN_LOWER_BOUND } persistModelConfig = True modelHolder = ModelHolder(ML_ALGORITHM, modelConfig, {}, METRIC_PERIOD.HISTORICAL.value, uuid) if strategy in [HPA, CONTINUOUS]: # replace start and end time for HPA and continuous strategy start_history_str = str(time.time() - float(HISTORICAL_CONF_TIME_WINDOW)) start_current_str = str(time.time() - float(CURRENT_CONF_TIME_WINDOW)) end_str = str(time.time()) hpaMetricsConfig = None if strategy == HPA: if "hpaMetricsConfig" in openRequest: hpaMetricsConfig = openRequest['hpaMetricsConfig'] if historicalConfigMap: for metric_type, metric_url in historicalConfigMap.items(): metric_url = metric_url.replace( 'START_TIME', start_history_str) metric_url = metric_url.replace('END_TIME', end_str) historicalConfigMap[metric_type] = metric_url if hpaMetricsConfig is not None and metric_type in hpaMetricsConfig: hpaMetricsConfigMap = hpaMetricsConfig[metric_type] for k, v in hpaMetricsConfigMap.items(): modelHolder.setModelConfig( "hpa", metric_type, k, v) if currentConfigMap: podUrl = openRequest['podCountURL'] if podUrl is not None and len(podUrl) > 0: start_current_pod_str = str( time.time() - float(CURRENT_CONF_POD_TIME_WINDOW)) podUrl = podUrl.replace('START_TIME', start_current_pod_str) podUrl = podUrl.replace('END_TIME', end_str) currentConfigMap['hpa_pods'] = podUrl for metric_type, metric_url in currentConfigMap.items(): metric_url = metric_url.replace( 'START_TIME', start_current_str) metric_url = metric_url.replace('END_TIME', end_str) currentConfigMap[metric_type] = metric_url if (not (modelHolder.hasModels or skipHistorical)): storeMapHistorical = convertStringToMap(historicalMetricStore) # below code only used while use prophet algm isProphet = False if (ML_ALGORITHM == AI_MODEL.PROPHET.value): isProphet = True modelConfig.setdefault(PROPHET_PERIOD, ML_PROPHET_PERIOD) modelConfig.setdefault(PROPHET_FREQ, ML_PROPHET_FREQ) if persistModelConfig: storeModelConfig(uuid, modelHolder.getModelConfigs()) # pass stragegy for hpa modelHolder, msg = computeHistoricalModel( historicalConfigMap, modelHolder, isProphet, storeMapHistorical, strategy) cacheModels(modelHolder) label_info['calcuHistorical'] = 'True' if (msg != ''): outputMsg.append(msg) if (not modelHolder.hasModels): outputMsg.append("No historical Data and model ") #print(getNowStr(), ": Warning: No historical: "+str(modelHolder)) hasHistorical = modelHolder.hasModels #start baseline to_do = [] currentDataSet = {} baselineDataSet = {} if skipBaseline: currentDataSet, _ = computeNonHistoricalModel( currentConfigMap, METRIC_PERIOD.CURRENT.value, convertStringToMap(currentMetricStore), strategy) else: with ProcessPoolExecutor(max_workers=2) as executor: currentjob = executor.submit( computeNonHistoricalModel, currentConfigMap, METRIC_PERIOD.CURRENT.value, convertStringToMap(currentMetricStore), strategy) baselinejob = executor.submit( computeNonHistoricalModel, convertStringToMap(baselineConfig), METRIC_PERIOD.BASELINE.value, convertStringToMap(baselineMetricStore), strategy) to_do.append(currentjob) to_do.append(baselinejob) for future in futures.as_completed(to_do): try: res = future.result() if (res[1] == METRIC_PERIOD.CURRENT.value): currentDataSet = res[0] else: baselineDataSet = res[0] except Exception as e: logger.error("job id" + uuid + " encount errorProcessPoolExecutor " + str(e)) #This is used for canary deployment to comarsion how close baseline and current currentLen = len(currentDataSet) baselineLen = len(baselineDataSet) hasCurrent = currentLen > 0 label_info['hasCurrent'] = hasCurrent hasBaseline = baselineLen > 0 logger.warning("jobid:" + uuid + " hasCurrent " + str(hasCurrent) + ", hasBaseline " + str(hasBaseline)) if hasCurrent == False: if strategy in [HPA, 'continuous']: logger.warning("job id: " + uuid + " not current metric...") continue ret = True if isPast(endTime, 20): ret = update_es_doc(strategy, status, uuid, REQUEST_STATE.COMPLETED_UNKNOWN.value, "Error: there is no current Metric. ") logger.warning("Current metric is empty, jobid " + uuid + " updateESDocStatus is :" + str(ret) + " time past mark job unknow " + currentConfig + " ".join(outputMsg)) else: cacheModels(modelHolder) ret = update_es_doc( strategy, status, uuid, REQUEST_STATE.PREPROCESS_INPROGRESS.value, "Warning: there is no current Metric, Will keep try until reachs endTime. " ) logger.warning( "Current metric is empty, jobid " + uuid + " updateESDocStatus is :" + str(ret) + " end time is not reach, will cache and retry " + currentConfig + " ".join(outputMsg)) if not ret: cacheModels(modelHolder) logger.error("ES update failed: job ID: " + uuid) # measurementMetric.sendMetric(MONITORING_REQUEST_TIME, label_info, calculateDuration(start)) continue if (hasBaseline): hasSameDistribution, detailedResults, meetSize = pairWiseComparson( currentDataSet, baselineDataSet, ML_PAIRWISE_ALGORITHM, ML_PAIRWISE_THRESHOLD, ML_BOUND) ret = True if (not hasSameDistribution): logger.warning( "current and base line does not have same distribution " + str(detailedResults) + " ".join(outputMsg)) ''' if hasHistorical == True: if meetSize : updateESDocStatus(uuid, REQUEST_STATE.COMPLETED_UNHEALTH , "baseline and current are different pattern. "+escapeString(''.join(outputMsg))) continue requireLowerThreshold = True else: ''' if meetSize: ret = update_es_doc( strategy, status, uuid, REQUEST_STATE.COMPLETED_UNHEALTH.value, "Warning: baseline and current are different pattern. " ) logger.warning( "job id :" + uuid + "completed_unhealth, current and baseline has different distribution pattern, updateESDocStatus is :" + str(ret)) else: if isPast(endTime, 10): ret = update_es_doc( strategy, status, uuid, REQUEST_STATE.COMPLETED_UNKNOWN.value, "Warning: baseline and current are different pattern but not meet min datapoints to determine." ) logger.warning( "job id :" + uuid + "completed_unknown...current or baseline is not same but not enough datapoints to confirm, updateESDocStatus is :" + str(ret)) else: ret = update_es_doc( strategy, status, uuid, REQUEST_STATE.PREPROCESS_COMPLETED.value, "pairwise not same so far and not meet min datapoints to determine." ) logger.warning( "job id :" + uuid + " pairwise not same and not enough datapoints but not meet min datapoint to determine , updateESDocStatus is :" + str(ret)) else: if isPast(endTime, 10): ret = update_es_doc( strategy, status, uuid, REQUEST_STATE.COMPLETED_HEALTH.value, "health") logger.warning("job ID : " + uuid + " is health. updateESDocStatus is :" + str(ret)) else: ret = update_es_doc( strategy, status, uuid, REQUEST_STATE.PREPROCESS_COMPLETED.value, "current and baseline have same distribution but not past endtime yet." ) # print(getNowStr(),": id ",uuid, " continue . bacause pairwise is not same but not past endTime yet " ) logger.warning( "job id :" + uuid + " will reprocess . current and base have same distribution but not past endTime yet, updateESDocStatus is :" + str(ret)) if not ret: cacheModels(modelHolder) logger.error("ES update failed: job ID: " + uuid) # measurementMetric.sendMetric(MONITORING_REQUEST_TIME, label_info, calculateDuration(start)) continue else: # no baseline metric but require baseline then wait or reach end time to mark as unknown if not skipBaseline: ret = True if isPast(endTime, 10): ret = update_es_doc( strategy, status, uuid, REQUEST_STATE.COMPLETED_UNKNOWN.value, "baseline query is empty.") logger.warning( "job ID : " + uuid + " unknown because baseline no data, updateESDocStatus is :" + str(ret)) else: # wait for baseline metric to generate ret = update_es_doc( strategy, status, uuid, REQUEST_STATE.PREPROCESS_COMPLETED.value, "no baseline data yet.") logger.warning( "job ID : " + uuid + " continue . no baseline data yet. updateESDocStatus is :" + str(ret)) if not ret: cacheModels(modelHolder) logger.error("ES update failed: job ID: " + uuid) # measurementMetric.sendMetric(MONITORING_REQUEST_TIME, label_info, calculateDuration(start)) continue # check historical (we may need to fail fast for non histrical netric use case #:TODO if hasHistorical == False: if strategy not in [HPA, CONTINUOUS]: logger.warning("job id: " + uuid + " not historical metric...") continue ret = True if isPast(endTime, 5): ret = update_es_doc( strategy, status, uuid, REQUEST_STATE.COMPLETED_UNKNOWN.value, "Error: no enough historical data and no baseline data." ) logger.warning( "job id: " + uuid + " completed unknown no enough historical data and no baseline data , updateESDocStatus is :" + str(ret)) else: ret = update_es_doc( strategy, status, uuid, REQUEST_STATE.PREPROCESS_COMPLETED.value, "Warning: not enough historical data and no baseline data will retry until endtime reaches." ) logger.warning( "job id: " + uuid + " will cache and reprocess becasue no historical, updateESDocStatus is :" + str(ret)) if not ret: cacheModels(modelHolder) logger.error("ES update failed: job ID: " + uuid) # measurementMetric.sendMetric(MONITORING_REQUEST_TIME, label_info, calculateDuration(start)) continue if strategy in [HPA, 'continuous']: computeAnomaly(currentDataSet, modelHolder, strategy) ret = update_es_doc(strategy, status, uuid, REQUEST_STATE.PREPROCESS_INPROGRESS.value, "") logger.warning("job id: " + uuid + " hpa in progress.") # if not ret: # cacheModels( modelHolder, max_cache) # logger.error("ES update failed: hpa job ID: "+uuid) # always cache models cacheModels(modelHolder) # measurementMetric.sendMetric(MONITORING_REQUEST_TIME, label_info, calculateDuration(start)) continue # add strategy hasAnomaly, anomaliesDataStr = computeAnomaly( currentDataSet, modelHolder, strategy) logger.warning("job ID is " + uuid + " hasAnomaly is " + str(hasAnomaly)) if hasAnomaly: # update ES to anomaly otherwise continue anomalyInfo = escapeString(anomaliesDataStr) ret = update_es_doc( strategy, status, uuid, REQUEST_STATE.COMPLETED_UNHEALTH.value, "Warning: anomaly detected between current and historical.", anomalyInfo) logger.warning("**job ID is unhealth " + uuid + " updateESDocStatus is :" + str(ret) + " " + anomaliesDataStr) if not ret: cacheModels(modelHolder) logger.error("ES update failed: job ID: " + uuid) else: if isPast(endTime, 10): ret = update_es_doc( strategy, status, uuid, REQUEST_STATE.COMPLETED_HEALTH.value, "current compare to histroical model is health") logger.warning("job ID: " + uuid + " is health, updateESDocStatus is :" + str(ret)) if not ret: cacheModels(modelHolder) logger.error("ES update failed: job ID: " + uuid) else: cacheModels(modelHolder) ret = update_es_doc( strategy, status, uuid, REQUEST_STATE.PREPROCESS_INPROGRESS.value, "Need to continuous to check untile reachs deployment endTime." ) logger.warning( "job ID : " + uuid + " health so far will reprocess updateESDocStatus is :" + str(ret)) # measurementMetric.sendMetric(MONITORING_REQUEST_TIME, label_info, calculateDuration(start)) except Exception as e: logger.error("uuid : " + uuid + " failed because ", e) try: if isPast(endTime, 5): update_es_doc( strategy, status, uuid, REQUEST_STATE.PREPROCESS_FAILED.value, "Critical: encount code exception. " + escapeString(''.join(outputMsg))) else: update_es_doc( strategy, status, uuid, REQUEST_STATE.PREPROCESS_COMPLETED.value, "Critical: encount code exception. " + escapeString(''.join(outputMsg))) except Exception as ee: logger.error("uuid : " + uuid + " failed because " + str(ee)) continue