def train_mul(Model): # create dataset and dataloader with tf.device("/cpu:0"): tfdata_dev = TFData(dataset=None, dataAttr=['feature', 'label', 'align'], dir_save=args.dirs.dev.tfdata, args=args).read(_shuffle=False) tfdata_monitor = TFData(dataset=None, dataAttr=['feature', 'label', 'align'], dir_save=args.dirs.train.tfdata, args=args).read(_shuffle=False) tfdata_monitor = tfdata_monitor.repeat().shuffle(500).padded_batch( args.batch_size, ([None, args.dim_input], [None], [None])).prefetch(buffer_size=5) tfdata_iter = iter(tfdata_monitor) tfdata_dev = tfdata_dev.padded_batch( args.batch_size, ([None, args.dim_input], [None], [None])) # get dataset ngram ngram_py, total_num = read_ngram(args.data.k, args.dirs.ngram, args.token2idx, type='list') # create model paremeters opti = tf.keras.optimizers.SGD(0.5) model = Model(args, optimizer=opti, name='fc') model.summary() def thread_session(thread_id, queue_input, queue_output): global kernel gpu = args.list_gpus[thread_id] with tf.device(gpu): opti_adam = build_optimizer(args, type='adam') model = Model(args, optimizer=opti_adam, name='fc' + str(thread_id)) print('thread_{} is waiting to run on {}....'.format( thread_id, gpu)) while True: # s = time() id, weights, x, aligns_sampled = queue_input.get() model.set_weights(weights) # t = time() logits = model(x, training=False) pz, K = model.EODM(logits, aligns_sampled, kernel) queue_output.put((id, pz, K)) # print('{} {:.3f}|{:.3f}s'.format(gpu, t-s, time()-s)) for id in range(args.num_gpus): thread = threading.Thread(target=thread_session, args=(id, queue_input, queue_output)) thread.daemon = True thread.start() # save & reload ckpt = tf.train.Checkpoint(model=model, optimizer=opti) ckpt_manager = tf.train.CheckpointManager(ckpt, args.dir_checkpoint, max_to_keep=20) if args.dirs.restore: latest_checkpoint = tf.train.CheckpointManager( ckpt, args.dirs.restore, max_to_keep=1).latest_checkpoint ckpt.restore(latest_checkpoint) print('{} restored!!'.format(latest_checkpoint)) best_rewards = -999 start_time = datetime.now() fer = 1.0 seed = 99999 step = 0 global aligns_sampled, kernel while 1: if fer < 0.69: break elif fer > 0.77 or step > 69: print('{}-th reset, pre FER: {:.3f}'.format(seed, fer)) seed += 1 step = 0 tf.random.set_seed(seed) model = Model(args, optimizer=opti, name='fc') head_tail_constrain(next(tfdata_iter), model, opti) fer = mini_eva(tfdata_dev, model) ngram_sampled = sample(ngram_py, args.data.top_k) kernel, py = ngram2kernel(ngram_sampled, args) else: step += 1 loss = train_step(model, tfdata_iter, py) fer = mini_eva(tfdata_dev, model) print('\tloss: {:.3f}\tFER: {:.3f}'.format(loss, fer)) for global_step in range(99999): run_model_time = time() loss = train_step(model, tfdata_iter, py) used_time = time() - run_model_time if global_step % 1 == 0: print('full training loss: {:.3f}, spend {:.2f}s step {}'.format( loss, used_time, global_step)) if global_step % args.dev_step == 0: evaluation(tfdata_dev, model) if global_step % args.decode_step == 0: decode(model) if global_step % args.fs_step == 0: fs_constrain(next(tfdata_iter), model, opti) if global_step % args.save_step == 0: ckpt_manager.save() print('training duration: {:.2f}h'.format( (datetime.now() - start_time).total_seconds() / 3600))
def Train(): with tf.device("/cpu:0"): # dataset_train = ASR_align_ArkDataSet( # scp_file=args.dirs.train.scp, # trans_file=args.dirs.train.trans, # align_file=None, # feat_len_file=None, # args=args, # _shuffle=False, # transform=False) # dataset_dev = ASR_align_ArkDataSet( # scp_file=args.dirs.dev.scp, # trans_file=args.dirs.dev.trans, # align_file=None, # feat_len_file=None, # args=args, # _shuffle=False, # transform=False) dataset_train = ASR_align_DataSet( trans_file=args.dirs.train.trans, align_file=args.dirs.train.align, uttid2wav=args.dirs.train.wav_scp, feat_len_file=args.dirs.train.feat_len, args=args, _shuffle=False, transform=True) dataset_dev = ASR_align_DataSet(trans_file=args.dirs.dev.trans, uttid2wav=args.dirs.dev.wav_scp, align_file=args.dirs.dev.align, feat_len_file=args.dirs.dev.feat_len, args=args, _shuffle=False, transform=True) # wav data feature_train = TFData(dataset=dataset_train, dir_save=args.dirs.train.tfdata, args=args).read(transform=True) feature_dev = TFData(dataset=dataset_dev, dir_save=args.dirs.dev.tfdata, args=args).read(transform=True) bucket = tf.data.experimental.bucket_by_sequence_length( element_length_func=lambda uttid, x: tf.shape(x)[0], bucket_boundaries=args.list_bucket_boundaries, bucket_batch_sizes=args.list_batch_size, padded_shapes=((), [None, args.dim_input])) iter_feature_train = iter( feature_train.repeat().shuffle(10).apply(bucket).prefetch( buffer_size=5)) # iter_feature_train = iter(feature_train.repeat().shuffle(500).padded_batch(args.batch_size, # ((), [None, args.dim_input])).prefetch(buffer_size=5)) # feature_dev = feature_dev.apply(bucket).prefetch(buffer_size=5) feature_dev = feature_dev.padded_batch(args.batch_size, ((), [None, args.dim_input])) # create model paremeters model = Model(args) model.summary() # lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( # args.opti.lr, # decay_steps=args.opti.decay_steps, # decay_rate=0.5, # staircase=True) optimizer = tf.keras.optimizers.Adam(args.opti.lr, beta_1=0.5, beta_2=0.9) writer = tf.summary.create_file_writer(str(args.dir_log)) ckpt = tf.train.Checkpoint(model=model, optimizer=optimizer) ckpt_manager = tf.train.CheckpointManager(ckpt, args.dir_checkpoint, max_to_keep=20) step = 0 # if a checkpoint exists, restore the latest checkpoint. if args.dirs.checkpoint: _ckpt_manager = tf.train.CheckpointManager(ckpt, args.dirs.checkpoint, max_to_keep=1) ckpt.restore(_ckpt_manager.latest_checkpoint) print('checkpoint {} restored!!'.format( _ckpt_manager.latest_checkpoint)) step = int(_ckpt_manager.latest_checkpoint.split('-')[-1]) start_time = datetime.now() num_processed = 0 while step < 99999999: start = time() uttids, x = next(iter_feature_train) trans = dataset_train.get_attrs('trans', uttids.numpy()) loss_supervise = train_CTC_supervised(x, trans, model, optimizer) num_processed += len(x) progress = num_processed / args.data.train_size if step % 10 == 0: print('loss: {:.3f}\tbatch: {}\tused: {:.3f}\t {:.3f}% step: {}'. format(loss_supervise, x.shape, time() - start, progress * 100, step)) with writer.as_default(): tf.summary.scalar("costs/loss_supervise", loss_supervise, step=step) if step % args.dev_step == 0: cer = evaluate(feature_dev, dataset_dev, args.data.dev_size, model) with writer.as_default(): tf.summary.scalar("performance/cer", cer, step=step) if step % args.decode_step == 0: monitor(dataset_dev[0], model) if step % args.save_step == 0: save_path = ckpt_manager.save(step) print('save model {}'.format(save_path)) step += 1 print('training duration: {:.2f}h'.format( (datetime.now() - start_time).total_seconds() / 3600))
def Train(): with tf.device("/cpu:0"): dataset_train = ASR_align_ArkDataSet(scp_file=args.dirs.train.scp, trans_file=args.dirs.train.trans, align_file=None, feat_len_file=None, args=args, _shuffle=False, transform=False) dataset_dev = ASR_align_ArkDataSet(scp_file=args.dirs.dev.scp, trans_file=args.dirs.dev.trans, align_file=None, feat_len_file=None, args=args, _shuffle=False, transform=False) # wav data feature_train = TFData(dataset=dataset_train, dir_save=args.dirs.train.tfdata, args=args).read() feature_dev = TFData(dataset=dataset_dev, dir_save=args.dirs.dev.tfdata, args=args).read() bucket = tf.data.experimental.bucket_by_sequence_length( element_length_func=lambda uttid, x: tf.shape(x)[0], bucket_boundaries=args.list_bucket_boundaries, bucket_batch_sizes=args.list_batch_size, padded_shapes=((), [None, args.dim_input])) iter_feature_train = iter( feature_train.repeat().shuffle(500).apply(bucket).prefetch( buffer_size=5)) # iter_feature_train = iter(feature_train.repeat().shuffle(500).padded_batch(args.batch_size, # ((), [None, args.dim_input])).prefetch(buffer_size=5)) feature_dev = feature_dev.padded_batch(args.batch_size, ((), [None, args.dim_input])) stratedy = tf.distribute.MirroredStrategy( devices=["device:GPU:0", "device:GPU:1"]) with stratedy.scope(): # create model paremeters model = conv_lstm(args) model.summary() optimizer = tf.keras.optimizers.Adam(args.opti.lr, beta_1=0.5, beta_2=0.9) writer = tf.summary.create_file_writer(str(args.dir_log)) ckpt = tf.train.Checkpoint(model=model, optimizer=optimizer) ckpt_manager = tf.train.CheckpointManager(ckpt, args.dir_checkpoint, max_to_keep=20) step = 0 # if a checkpoint exists, restore the latest checkpoint. if args.dirs.checkpoint: _ckpt_manager = tf.train.CheckpointManager(ckpt, args.dirs.checkpoint, max_to_keep=1) ckpt.restore(_ckpt_manager.latest_checkpoint) print('checkpoint {} restored!!'.format( _ckpt_manager.latest_checkpoint)) step = int(_ckpt_manager.latest_checkpoint.split('-')[-1]) start_time = datetime.now() num_processed = 0 while step < 99999999: start = time() @tf.function(experimental_relax_shapes=True) def _train(): for _ in tf.range(1000): stratedy.experimental_run_v2(train_CTC_supervised, args=(next(iter_feature_train), dataset_train, model, optimizer)) # loss_supervise = tf.reduce_mean(res._values) # loss_supervise = train_CTC_supervised(x, trans, model, optimizer) # num_processed += len(x) # progress = num_processed / args.data.train_size # if step % 10 == 0: # print('loss: {:.3f}\tused: {:.3f}\t step: {}'.format( # loss_supervise, time()-start, step)) # with writer.as_default(): # tf.summary.scalar("costs/loss_supervise", loss_supervise, step=step) # if step % args.dev_step == 0: # cer = evaluate(feature_dev, dataset_dev, args.data.dev_size, model) # with writer.as_default(): # tf.summary.scalar("performance/cer", cer, step=step) # if step % args.decode_step == 0: # monitor(dataset_dev[0], model) # if step % args.save_step == 0: # save_path = ckpt_manager.save(step) # print('save model {}'.format(save_path)) # # step += 1 print('training duration: {:.2f}h'.format( (datetime.now() - start_time).total_seconds() / 3600))
def Train(): args.data.untrain_size = TFData.read_tfdata_info( args.dirs.untrain.tfdata)['size_dataset'] with tf.device("/cpu:0"): dataset_train = ASR_align_ArkDataSet(scp_file=args.dirs.train.scp, trans_file=args.dirs.train.trans, align_file=None, feat_len_file=None, args=args, _shuffle=False, transform=False) dataset_untrain = ASR_align_ArkDataSet(scp_file=args.dirs.untrain.scp, trans_file=None, align_file=None, feat_len_file=None, args=args, _shuffle=False, transform=False) dataset_dev = ASR_align_ArkDataSet(scp_file=args.dirs.dev.scp, trans_file=args.dirs.dev.trans, align_file=None, feat_len_file=None, args=args, _shuffle=False, transform=False) # wav data feature_train = TFData(dataset=dataset_train, dir_save=args.dirs.train.tfdata, args=args).read() feature_unsupervise = TFData(dataset=dataset_untrain, dir_save=args.dirs.untrain.tfdata, args=args).read() feature_dev = TFData(dataset=dataset_dev, dir_save=args.dirs.dev.tfdata, args=args).read() bucket = tf.data.experimental.bucket_by_sequence_length( element_length_func=lambda uttid, x: tf.shape(x)[0], bucket_boundaries=args.list_bucket_boundaries, bucket_batch_sizes=args.list_batch_size, padded_shapes=((), [None, args.dim_input])) iter_feature_train = iter( feature_train.repeat().shuffle(100).apply(bucket).prefetch( buffer_size=5)) # iter_feature_unsupervise = iter(feature_unsupervise.repeat().shuffle(100).apply(bucket).prefetch(buffer_size=5)) # iter_feature_train = iter(feature_train.repeat().shuffle(100).padded_batch(args.batch_size, # ((), [None, args.dim_input])).prefetch(buffer_size=5)) iter_feature_unsupervise = iter( feature_unsupervise.repeat().shuffle(100).padded_batch( args.batch_size, ((), [None, args.dim_input])).prefetch(buffer_size=5)) # feature_dev = feature_dev.apply(bucket).prefetch(buffer_size=5) feature_dev = feature_dev.padded_batch(args.batch_size, ((), [None, args.dim_input])) dataset_text = TextDataSet(list_files=[args.dirs.lm.data], args=args, _shuffle=True) tfdata_train = tf.data.Dataset.from_generator(dataset_text, (tf.int32), (tf.TensorShape([None]))) iter_text = iter(tfdata_train.cache().repeat().shuffle(1000).map( lambda x: x[:args.model.D.max_label_len]).padded_batch( args.text_batch_size, ([args.model.D.max_label_len])).prefetch(buffer_size=5)) # create model paremeters encoder = Encoder(args) decoder = Decoder(args) D = CLM(args) encoder.summary() decoder.summary() D.summary() optimizer = tf.keras.optimizers.Adam(0.0001, beta_1=0.5, beta_2=0.9) optimizer_D = tf.keras.optimizers.Adam(0.0001, beta_1=0.5, beta_2=0.9) writer = tf.summary.create_file_writer(str(args.dir_log)) ckpt_G = tf.train.Checkpoint(encoder=encoder, decoder=decoder) ckpt_manager = tf.train.CheckpointManager(ckpt_G, args.dir_checkpoint, max_to_keep=20) step = 0 if args.dirs.checkpoint_G: _ckpt_manager = tf.train.CheckpointManager(ckpt_G, args.dirs.checkpoint_G, max_to_keep=1) ckpt_G.restore(_ckpt_manager.latest_checkpoint) print('checkpoint_G {} restored!!'.format( _ckpt_manager.latest_checkpoint)) # cer = evaluate(feature_dev, dataset_dev, args.data.dev_size, encoder, decoder) # with writer.as_default(): # tf.summary.scalar("performance/cer", cer, step=step) start_time = datetime.now() num_processed = 0 while step < 99999999: start = time() # supervise training uttids, x = next(iter_feature_train) trans = dataset_train.get_attrs('trans', uttids.numpy()) loss_supervise = train_CTC_supervised(x, trans, encoder, decoder, optimizer) # unsupervise training text = next(iter_text) _, un_x = next(iter_feature_unsupervise) # loss_G = train_G(un_x, encoder, decoder, D, optimizer, args.model.D.max_label_len) loss_G = train_G(un_x, encoder, decoder, D, optimizer, args.model.D.max_label_len) loss_D = train_D(un_x, text, encoder, decoder, D, optimizer_D, args.lambda_gp, args.model.D.max_label_len) num_processed += len(un_x) progress = num_processed / args.data.untrain_size if step % 10 == 0: print( 'loss_supervise: {:.3f}\tloss_G: {:.3f}\tloss_D: {:.3f}\tbatch: {}\tused: {:.3f}\t {:.3f}% step: {}' .format(loss_supervise, loss_G, loss_D, un_x.shape, time() - start, progress * 100, step)) with writer.as_default(): tf.summary.scalar("costs/loss_supervise", loss_supervise, step=step) if step % args.dev_step == args.dev_step - 1: cer = evaluate(feature_dev, dataset_dev, args.data.dev_size, encoder, decoder) with writer.as_default(): tf.summary.scalar("performance/cer", cer, step=step) if step % args.decode_step == 0: monitor(dataset_dev[0], encoder, decoder) if step % args.save_step == 0: save_path = ckpt_manager.save(step) print('save model {}'.format(save_path)) step += 1 print('training duration: {:.2f}h'.format( (datetime.now() - start_time).total_seconds() / 3600))
def Train(): dataset_train = ASR_align_DataSet(trans_file=args.dirs.train.trans, align_file=args.dirs.train.align, uttid2wav=args.dirs.train.wav_scp, feat_len_file=args.dirs.train.feat_len, args=args, _shuffle=True, transform=True) dataset_dev = ASR_align_DataSet(trans_file=args.dirs.dev.trans, align_file=args.dirs.dev.align, uttid2wav=args.dirs.dev.wav_scp, feat_len_file=args.dirs.dev.feat_len, args=args, _shuffle=False, transform=True) with tf.device("/cpu:0"): # wav data feature_train = TFData(dataset=dataset_train, dir_save=args.dirs.train.tfdata, args=args).read() feature_dev = TFData(dataset=dataset_dev, dir_save=args.dirs.dev.tfdata, args=args).read() if args.num_supervised: dataset_train_supervise = ASR_align_DataSet( trans_file=args.dirs.train_supervise.trans, align_file=args.dirs.train_supervise.align, uttid2wav=args.dirs.train_supervise.wav_scp, feat_len_file=args.dirs.train_supervise.feat_len, args=args, _shuffle=False, transform=True) feature_train_supervise = TFData( dataset=dataset_train_supervise, dir_save=args.dirs.train_supervise.tfdata, args=args).read() supervise_uttids, supervise_x = next(iter(feature_train_supervise.take(args.num_supervised).\ padded_batch(args.num_supervised, ((), [None, args.dim_input])))) supervise_aligns = dataset_train_supervise.get_attrs( 'align', supervise_uttids.numpy()) # supervise_bounds = dataset_train_supervise.get_attrs('bounds', supervise_uttids.numpy()) iter_feature_train = iter( feature_train.repeat().shuffle(500).padded_batch( args.batch_size, ((), [None, args.dim_input])).prefetch(buffer_size=5)) feature_dev = feature_dev.padded_batch(args.batch_size, ((), [None, args.dim_input])) # create model paremeters model = PhoneClassifier(args) model.summary() optimizer_G = tf.keras.optimizers.Adam(args.opti.lr, beta_1=0.5, beta_2=0.9) writer = tf.summary.create_file_writer(str(args.dir_log)) ckpt = tf.train.Checkpoint(model=model, optimizer_G=optimizer_G) ckpt_manager = tf.train.CheckpointManager(ckpt, args.dir_checkpoint, max_to_keep=20) step = 0 # if a checkpoint exists, restore the latest checkpoint. if args.dirs.checkpoint: _ckpt_manager = tf.train.CheckpointManager(ckpt, args.dirs.checkpoint, max_to_keep=1) ckpt.restore(_ckpt_manager.latest_checkpoint) print('checkpoint {} restored!!'.format( _ckpt_manager.latest_checkpoint)) step = int(_ckpt_manager.latest_checkpoint.split('-')[-1]) start_time = datetime.now() while step < 99999999: start = time() if args.num_supervised: x = supervise_x loss_supervise = train_G_supervised(supervise_x, supervise_aligns, model, optimizer_G, args.dim_output) # loss_supervise, bounds_loss = train_G_bounds_supervised( # x, supervise_bounds, supervise_aligns, model, optimizer_G, args.dim_output) else: uttids, x = next(iter_feature_train) aligns = dataset_train.get_attrs('align', uttids.numpy()) # trans = dataset_train.get_attrs('trans', uttids.numpy()) loss_supervise = train_G_supervised(x, aligns, model, optimizer_G, args.dim_output) # loss_supervise = train_G_TBTT_supervised(x, aligns, model, optimizer_G, args.dim_output) # bounds = dataset_train.get_attrs('bounds', uttids.numpy()) # loss_supervise, bounds_loss = train_G_bounds_supervised(x, bounds, aligns, model, optimizer_G, args.dim_output) # loss_supervise = train_G_CTC_supervised(x, trans, model, optimizer_G) if step % 10 == 0: print('loss_supervise: {:.3f}\tbatch: {}\tused: {:.3f}\tstep: {}'. format(loss_supervise, x.shape, time() - start, step)) # print('loss_supervise: {:.3f}\tloss_bounds: {:.3f}\tbatch: {}\tused: {:.3f}\tstep: {}'.format( # loss_supervise, bounds_loss, x.shape, time()-start, step)) with writer.as_default(): tf.summary.scalar("costs/loss_supervise", loss_supervise, step=step) if step % args.dev_step == 0: fer, cer_0 = evaluate(feature_dev, dataset_dev, args.data.dev_size, model, beam_size=0, with_stamp=True) fer, cer = evaluate(feature_dev, dataset_dev, args.data.dev_size, model, beam_size=0, with_stamp=False) with writer.as_default(): tf.summary.scalar("performance/fer", fer, step=step) tf.summary.scalar("performance/cer_0", cer_0, step=step) tf.summary.scalar("performance/cer", cer, step=step) if step % args.decode_step == 0: monitor(dataset_dev[0], model) if step % args.save_step == 0: save_path = ckpt_manager.save(step) print('save model {}'.format(save_path)) step += 1 print('training duration: {:.2f}h'.format( (datetime.now() - start_time).total_seconds() / 3600))
def Train(): with tf.device("/cpu:0"): dataset_train = ASR_align_ArkDataSet(scp_file=args.dirs.train.scp, trans_file=args.dirs.train.trans, align_file=None, feat_len_file=None, args=args, _shuffle=False, transform=True) feature_train = TFData(dataset=dataset_train, dir_save=args.dirs.train.tfdata, args=args).read(_shuffle=True, transform=True) bucket = tf.data.experimental.bucket_by_sequence_length( element_length_func=lambda uttid, x: tf.shape(x)[0], bucket_boundaries=args.list_bucket_boundaries, bucket_batch_sizes=args.list_batch_size, padded_shapes=((), [None, args.dim_input])) iter_feature_train = iter( feature_train.repeat().shuffle(10).apply(bucket).prefetch( buffer_size=5)) # create model paremeters model = Transformer(args) model.summary() # learning_rate = CustomSchedule(args.model.G.d_model) # lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( # 0.0001, # decay_steps=10000, # decay_rate=0.5, # staircase=True) optimizer = tf.keras.optimizers.Adam(0.000005, beta_1=0.5, beta_2=0.9, epsilon=1e-9) # optimizer = tf.keras.optimizers.SGD(0.1) ckpt = tf.train.Checkpoint(model=model) ckpt_manager = tf.train.CheckpointManager(ckpt, args.dir_checkpoint, max_to_keep=20) step = 0 # if a checkpoint exists, restore the latest checkpoint. if args.dirs.checkpoint: _ckpt_manager = tf.train.CheckpointManager(ckpt, args.dirs.checkpoint, max_to_keep=1) ckpt.restore(_ckpt_manager.latest_checkpoint) print('checkpoint {} restored!!'.format( _ckpt_manager.latest_checkpoint)) step = int(_ckpt_manager.latest_checkpoint.split('-')[-1]) start_time = datetime.now() num_processed = 0 # uttids, x = next(iter_feature_train) # trans_sos = dataset_train.get_attrs('trans_sos', uttids.numpy()) # trans_eos = dataset_train.get_attrs('trans_eos', uttids.numpy()) while step < 99999999: start = time() uttids, x = next(iter_feature_train) trans_sos = dataset_train.get_attrs('trans_sos', uttids.numpy()) trans_eos = dataset_train.get_attrs('trans_eos', uttids.numpy()) loss_supervise = train_step(x, trans_sos, trans_eos, model, optimizer) num_processed += len(x) progress = num_processed / args.data.train_size if step % 20 == 0: print('loss: {:.3f}\tbatch: {}\tused: {:.3f}\t {:.3f}% step: {}'. format(loss_supervise, x.shape, time() - start, progress * 100, step)) # if step % args.save_step == 0: # save_path = ckpt_manager.save(step) # print('save model {}'.format(save_path)) step += 1 print('training duration: {:.2f}h'.format( (datetime.now() - start_time).total_seconds() / 3600))