def train_and_evaluate(): # Just for measure the performance of the sentiment analysis model net = SoundMLP() net.to(config['device']) train_loader, test_loader = get_train_loaders() train_model(net, train_loader, epochs=30, lr=0.0001) eval_network(net, test_loader)
def train_and_evaluate(): net = get_pretrained_mobile_net(pretrained=True) net.to(config['device']) train_loader, test_loader, deploy_loader = get_oasis_dataset_loaders() for i in range(10): print(i * 5) train_model(net, train_loader, epochs=5, lr=0.0001, train_type='image') eval_network(net, test_loader, train_type='image')
def validate_saved_model(): train_loader = get_deploy_loaders() model = SoundMLP() model.to(config['device']) model.load_neural_model("models/mlp.model") model.load_neural_space_statistics("models/space_statistics.pickle") eval_network(model, train_loader) print("Mean = ", model.mean) print("Std = ", model.std)
def train_and_evaluate(): net = NeuralTranslator() net.to(config['device']) train_loader, test_loader = get_train_loaders(n_clusters=10, seed=1, n_sub_classes=10) train_model(net, train_loader, epochs=200, lr=0.001, train_type='translator') eval_network(net, train_loader, train_type='translator') eval_network(net, test_loader, train_type='translator')
def train_custom_id(imagenet_ids, i): train_loader = get_deploy_loaders(ids=imagenet_ids[i], n_sub_classes=10) net = NeuralTranslator() net.to(config['device']) train_model(net, train_loader, epochs=200, lr=0.001, train_type='translator') eval_network(net, train_loader, train_type='translator') torch.save(net.state_dict(), "models/neural_translator_custom_" + str(i) + ".model") net = NeuralTranslator() net.to(config['device']) net.load_state_dict( torch.load("models/neural_translator_custom_" + str(i) + ".model")) eval_network(net, train_loader, train_type='translator')
def train_deploy(seed=1): train_loader = get_deploy_loaders(n_clusters=10, seed=seed, n_sub_classes=10) net = NeuralTranslator() net.to(config['device']) train_model(net, train_loader, epochs=200, lr=0.001, train_type='translator') eval_network(net, train_loader, train_type='translator') torch.save(net.state_dict(), "models/neural_translator_" + str(seed) + ".model") net = NeuralTranslator() net.to(config['device']) net.load_state_dict( torch.load("models/neural_translator_" + str(seed) + ".model")) eval_network(net, train_loader, train_type='translator')
def train_deploy(): train_loader, test_loader, deploy_loader = get_oasis_dataset_loaders() net = get_pretrained_mobile_net(pretrained=True) net.to(config['device']) train_model(net, deploy_loader, epochs=50, lr=0.0001, train_type='image') eval_network(net, test_loader, train_type='image') train_model(net, deploy_loader, epochs=10, lr=0.00001, train_type='image') eval_network(net, test_loader, train_type='image') torch.save(net.state_dict(), "models/image_sentiment.model") model = get_pretrained_mobile_net(pretrained=True) model.to(config['device']) model.load_state_dict(torch.load("models/image_sentiment.model")) eval_network(model, test_loader, train_type='image')
def train_deploy(): train_loader = get_deploy_loaders() net = SoundMLP() net.to(config['device']) train_model(net, train_loader, epochs=30, lr=0.0001) eval_network(net, train_loader) train_model(net, train_loader, epochs=20, lr=0.00001) eval_network(net, train_loader) torch.save(net.state_dict(), "models/mlp.model") model = SoundMLP() model.to(config['device']) model.load_state_dict(torch.load("models/mlp.model")) eval_network(model, train_loader)