# coding: utf-8 from utils.trainer import MyArgs, STFT_Separator_enhance_Trainer from models.dpcl import DPCL if __name__ == '__main__': p = MyArgs() # DPCL model to load + params p.parser.add_argument('--model_folder', help='Path to the Model folder to load', required=True) p.add_stft_args() p.add_separator_args() p.add_enhance_layer_args() args = p.get_args() trainer = STFT_Separator_enhance_Trainer(DPCL, 'STFT_DPCL_enhance', **vars(args)) trainer.train()
# coding: utf-8 from utils.trainer import MyArgs, STFT_Separator_FineTune_Trainer from models.L41 import L41Model if __name__ == '__main__': p = MyArgs() p.parser.add_argument('--model_folder', help='Path to the Model folder to load', required=True) p.add_stft_args() p.add_separator_args() args = p.get_args() trainer = STFT_Separator_FineTune_Trainer(L41Model, 'STFT_L41_finetuning', **vars(args)) trainer.train()
# coding: utf-8 from utils.trainer import MyArgs, Front_Separator_Finetuning_Trainer from models.L41 import L41Model if __name__ == '__main__': p = MyArgs() # Adapt model to load + params p.parser.add_argument('--model_folder', help='Path to model folder to load', required=True) p.add_adapt_args() p.add_separator_args() args = p.get_args() trainer = Front_Separator_Finetuning_Trainer(L41Model, 'front_L41_finetuning', pretraining=False, **vars(args)) trainer.build_model() trainer.train()
# coding: utf-8 from utils.trainer import MyArgs, Front_Separator_Enhance_Finetuning_Trainer from models.dpcl import DPCL if __name__ == '__main__': p = MyArgs() # Adapt model to load + params p.parser.add_argument('--model_folder', help='Path to model folder to load', required=True) p.add_adapt_args() p.add_separator_args() p.add_finetuning_args() p.add_enhance_layer_args() args = p.get_args() trainer = Front_Separator_Enhance_Finetuning_Trainer( DPCL, 'front_DPCL_finetuning', pretraining=False, **vars(args)) trainer.train()
# coding: utf-8 from utils.trainer import MyArgs, STFT_Separator_FineTune_Trainer from models.L41 import L41Model if __name__ == '__main__': p = MyArgs() p.parser.add_argument('--model_folder', help='Path to the Model folder to load', required=True) p.add_stft_args() p.add_finetuning_args() p.add_separator_args() args = p.get_args() trainer = STFT_Separator_FineTune_Trainer(L41Model, 'STFT_L41_finetuning', **vars(args)) trainer.train()
# coding: utf-8 from utils.trainer import MyArgs, Front_Separator_Inference, STFT_inference, STFT_finetuned_inference from models.L41 import L41Model from utils.bss_eval import bss_eval_sources import numpy as np if __name__ == '__main__': p = MyArgs() p.parser.add_argument('--model_folder', help='Path to the Model folder to load', required=True) p.select_inferencer() p.add_adapt_args() p.add_separator_args() args = p.get_args() # Switch on different model Inferencer: if args.model == 'front_L41': inferencer = Front_Separator_Inference elif args.model == 'STFT_L41': inferencer = STFT_inference inferencer = inferencer(L41Model, 'inference', **vars(args)) sdr = 0.0 sir = 0.0 sar = 0.0 i = 0 for mix, non_mix, separated in inferencer.inference(): for m, n_m, s in zip(list(mix), list(non_mix), list(separated)):
# coding: utf-8 from utils.trainer import MyArgs, Adapt_Pretrainer if __name__ == '__main__': p = MyArgs() #Preprocess arguments p.add_adapt_args() args = p.get_args() trainer = Adapt_Pretrainer(pretraining=True, **vars(args)) trainer.build_model() trainer.train() #Network arguments