예제 #1
0
def evaluate_from_model(model_name):

    models_dir = 'C:/Users/Omar/OneDrive - Duke University/Padilla Group/Manuscripts/Lorentz DNN/DNN models/Lorentz/06-2021'
    model_dir = os.path.join(models_dir, model_name)
    pytorch_dir = 'C:/Users/Omar/PycharmProjects/DL_AEM/forward/lorentz_model'

    os.chdir(pytorch_dir)
    flags = fr.read_flag()
    # flags = fr.load_flags(model_dir)
    flags.eval_model = model_name


    print("Load data:")
    train_loader, test_loader = tdu.generate_torch_dataloader(x_range=flags.x_range,
                                                              y_range=flags.y_range,
                                                              geoboundary=flags.geoboundary,
                                                              batch_size=flags.batch_size,
                                                              normalize_input=flags.normalize_input,
                                                              data_dir=flags.data_dir,
                                                              test_ratio=0.999, shuffle=False)

    ntwk = Network(LorentzDNN, flags, train_loader, test_loader, inference_mode=True, saved_model=flags.eval_model)

    # Evaluation process
    print("Start eval now:")
    pred_file, truth_file = ntwk.evaluate()

    # Plot the MSE distribution
    plotMSELossDistrib_eval(pred_file, truth_file, flags)
    print("Evaluation finished")
예제 #2
0
파일: train.py 프로젝트: ok-nc/DL_AEM
def continue_training_model(flags):

    eval_model = flags.eval_model

    # Retrieve flag object
    print("Retrieving flag object for parameters")
    old_model_dir = os.path.join("models", eval_model)
    flags = fr.load_flags(old_model_dir)
    flags.model_name = eval_model + '_retrain'

    train_loader, test_loader = tdu.generate_torch_dataloader(
        x_range=flags.x_range,
        y_range=flags.y_range,
        geoboundary=flags.geoboundary,
        data_dir=flags.data_dir,
        batch_size=flags.batch_size,
        normalize_input=flags.normalize_input,
        test_ratio=flags.test_ratio,
        shuffle=True,
        dataset_size=flags.data_reduce)

    print("Loading pre-trained network now")

    # Make Network
    ntwk = Network(LorentzDNN, flags, train_loader, test_loader)
    new_model_dir = ntwk.ckpt_dir
    ntwk.ckpt_dir = old_model_dir
    ntwk.load()
    ntwk.ckpt_dir = new_model_dir

    # Training process
    print("Continue training model now...")
    ntwk.train()

    write_flags_and_BVE(flags, ntwk.best_mse_loss, ntwk.ckpt_dir)
예제 #3
0
파일: train.py 프로젝트: ok-nc/DL_AEM
def evaluate_from_model(model_dir):
    """
    Evaluating interface. 1. Retreive the flags 2. get data 3. initialize network 4. eval
    :param model_dir: The folder to retrieve the model
    :return: None
    """
    # Retrieve the flag object
    if (model_dir.startswith("models")):
        model_dir = model_dir[7:]
        print("after removing prefix models/, now model_dir is:", model_dir)
    print("Retrieving flag object for parameters")
    flags = fr.load_flags(os.path.join("models", model_dir))
    flags.eval_model = model_dir  # Reset the eval mode

    # Get the data
    # train_loader, test_loader = datareader.read_data(flags)
    train_loader, test_loader = tdu.generate_torch_dataloader(
        x_range=flags.x_range,
        y_range=flags.y_range,
        geoboundary=flags.geoboundary,
        batch_size=flags.batch_size,
        normalize_input=flags.normalize_input,
        data_dir=flags.data_dir,
        test_ratio=0,
        shuffle=False)

    print("Making network now")

    # Make Network
    ntwk = Network(LorentzDNN,
                   flags,
                   train_loader,
                   test_loader,
                   inference_mode=True,
                   saved_model=flags.eval_model)

    # Evaluation process
    print("Start eval now:")
    pred_T_file, truth_T_file, pred_R_file, truth_R_file = ntwk.evaluate()
    # eps_re_file, eps_im_file, mu_re_file, mu_im_file ,eps_eff_re_file, eps_eff_im_file, \
    #    mu_eff_re_file, mu_eff_im_file, n_eff_re_file, n_eff_im_file, theta_re_file, theta_im_file, adv_re_file, \
    #    adv_im_file = ntwk.evaluate_all_output()

    # Plot the MSE distribution
    # plotMSELossDistrib_eval(pred_T_file, truth_T_file, flags)
    print("Evaluation finished")
예제 #4
0
파일: train.py 프로젝트: ok-nc/DL_AEM
def training_from_flag(flags):
    """
    Training interface. 1. Read in data
                        2. Initialize network
                        3. Train network
                        4. Record flags
    :param flag: The training flags read from command line or parameter.py
    :return: None
    """
    if flags.use_cpu_only:
        os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

    # # Import the data
    train_loader, test_loader = tdu.generate_torch_dataloader(
        x_range=flags.x_range,
        y_range=flags.y_range,
        geoboundary=flags.geoboundary,
        data_dir=flags.data_dir,
        batch_size=flags.batch_size,
        normalize_input=flags.normalize_input,
        test_ratio=flags.test_ratio,
        shuffle=True,
        dataset_size=flags.data_reduce)

    # Reset the boundary if normalized
    if flags.normalize_input:
        flags.geoboundary_norm = [-1, 1, -1, 1]

    print("Geometry boundary is set to:", flags.geoboundary)

    # Make Network
    print("Making network now")
    ntwk = Network(LorentzDNN, flags, train_loader, test_loader)

    # Training process
    print("Start training now...")
    ntwk.train()
    # ntwk.evaluate()

    # Do the house keeping, write the parameters and put into folder, also use pickle to save the flags object
    write_flags_and_BVE(flags, ntwk.best_validation_loss, ntwk.best_mse_loss,
                        ntwk.ckpt_dir)