예제 #1
0
def get_model_and_data_loaders(
    config: ConfigParser,
    logger: logging.Logger,
    ckpt_path: Path,
) -> Tuple[torch.nn.Module, module_data.ExpertDataLoader]:
    expert_dims, raw_input_dims, text_dim = compute_dims(config)

    data_loaders = config.init(
        name='data_loader',
        module=module_data,
        logger=logger,
        raw_input_dims=raw_input_dims,
        challenge_mode=config.get("challenge_mode", False),
        text_dim=text_dim,
        text_feat=config["experts"]["text_feat"],
        text_agg=config["experts"]["text_agg"],
        use_zeros_for_missing=config["experts"].get("use_zeros_for_missing",
                                                    False),
        task=config.get("task", "retrieval"),
        eval_only=True,
        distil_params=config.get("distil_params", None),
        training_file=config.get("training_file", None),
        caption_masks=config.get("caption_masks", None),
        ce_shared_dim=config["experts"].get("ce_shared_dim", None),
    )

    trn_config = compute_trn_config(config)
    model = config.init(
        name='arch',
        module=module_arch,
        trn_config=trn_config,
        expert_dims=expert_dims,
        text_dim=text_dim,
        disable_nan_checks=config["disable_nan_checks"],
        task=config.get("task", "retrieval"),
        ce_shared_dim=config["experts"].get("ce_shared_dim", None),
        feat_aggregation=config["data_loader"]["args"]["feat_aggregation"],
        trn_cat=config["data_loader"]["args"].get("trn_cat", 0),
    )
    ckpt_path = config._args.resume
    logger.info(f"Loading checkpoint: {ckpt_path} ...")
    checkpoint = torch.load(ckpt_path)
    state_dict = checkpoint['state_dict']
    if config['n_gpu'] > 1:
        model = torch.nn.DataParallel(model)
    # support backwards compatibility
    deprecated = ["ce.moe_fc_bottleneck1", "ce.moe_cg", "ce.moe_fc_proj"]
    for mod in deprecated:
        for suffix in ("weight", "bias"):
            key = f"{mod}.{suffix}"
            if key in state_dict:
                print(f"WARNING: Removing deprecated key {key} from model")
                state_dict.pop(key)
    model.load_state_dict(state_dict)

    return model, data_loaders
예제 #2
0
def get_model_and_data_loaders(
        config: ConfigParser,
        logger: logging.Logger,
        ckpt_path: Path,
) -> Tuple[torch.nn.Module, module_data.ExpertDataLoader]:
    expert_dims, raw_input_dims = compute_dims(config)
    trn_config = compute_trn_config(config)

    data_loaders = config.init(
        name='data_loader',
        module=module_data,
        logger=logger,
        raw_input_dims=raw_input_dims,
        challenge_mode=config.get("challenge_mode", False),
        text_feat=config["experts"]["text_feat"],
        text_dim=config["experts"]["text_dim"],
        text_agg=config["experts"]["text_agg"],
        use_zeros_for_missing=config["experts"].get("use_zeros_for_missing", False),
        task=config.get("task", "retrieval"),
        eval_only=True,
    )

    model = config.init(
        name='arch',
        module=module_arch,
        trn_config=trn_config,
        expert_dims=expert_dims,
        text_dim=config["experts"]["text_dim"],
        disable_nan_checks=config["disable_nan_checks"],
        task=config.get("task", "retrieval"),
        ce_shared_dim=config["experts"].get("ce_shared_dim", None),
        feat_aggregation=config["data_loader"]["args"]["feat_aggregation"],
        trn_cat=config["data_loader"]["args"].get("trn_cat", 0),
    )
    ckpt_path = config._args.resume
    logger.info(f"Loading checkpoint: {ckpt_path} ...")
    checkpoint = torch.load(ckpt_path)
    state_dict = checkpoint['state_dict']
    if config['n_gpu'] > 1:
        model = torch.nn.DataParallel(model)
    model.load_state_dict(state_dict)

    return model, data_loaders
예제 #3
0
def evaluation(config, logger=None, trainer=None):

    if logger is None:
        logger = config.get_logger('test')

    if getattr(config._args, "eval_from_training_config", False):
        eval_conf = copy.deepcopy(config)
        merge(eval_conf._config,
              config["eval_settings"],
              strategy=Strategy.REPLACE)
        config = eval_conf

    logger.info("Running evaluation with configuration:")
    logger.info(config)

    expert_dims, raw_input_dims = compute_dims(config)
    trn_config = compute_trn_config(config)

    # Set the random initial seeds
    seed = config["seed"]
    logger.info(f"Setting experiment random seed to {seed}")
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)

    update_src_web_video_dir(config)
    visualizer = config.init(
        name='visualizer',
        module=module_vis,
        exp_name=config._exper_name,
        web_dir=config._web_log_dir,
    )

    data_loaders = config.init(
        name='data_loader',
        module=module_data,
        logger=logger,
        raw_input_dims=raw_input_dims,
        challenge_mode=config.get("challenge_mode", False),
        text_feat=config["experts"]["text_feat"],
        text_dim=config["experts"]["text_dim"],
        text_agg=config["experts"]["text_agg"],
        use_zeros_for_missing=config["experts"].get("use_zeros_for_missing",
                                                    False),
        task=config.get("task", "retrieval"),
        eval_only=True,
    )

    model = config.init(
        name='arch',
        module=module_arch,
        trn_config=trn_config,
        expert_dims=expert_dims,
        text_dim=config["experts"]["text_dim"],
        disable_nan_checks=config["disable_nan_checks"],
        task=config.get("task", "retrieval"),
        ce_shared_dim=config["experts"].get("ce_shared_dim", None),
        feat_aggregation=config["data_loader"]["args"]["feat_aggregation"],
        trn_cat=config["data_loader"]["args"].get("trn_cat", 0),
    )
    logger.info(model)

    metrics = [getattr(module_metric, met) for met in config['metrics']]
    ckpt_path = config._args.resume
    logger.info(f"Loading checkpoint: {ckpt_path} ...")
    checkpoint = torch.load(ckpt_path)
    state_dict = checkpoint['state_dict']
    if config['n_gpu'] > 1:
        model = torch.nn.DataParallel(model)
    model.load_state_dict(state_dict)
    challenge_mode = config.get("challenge_mode", False)
    challenge_msg = (
        "\n"
        "Evaluation ran on challenge features. To obtain a score, upload the similarity"
        "matrix for each dataset to the test server after running the "
        "`misc/cvpr2020-challenge/prepare_submission.py` script and following the "
        "instructions at: "
        "https://www.robots.ox.ac.uk/~vgg/challenges/video-pentathlon/"
        "\n")

    # prepare model for testing.  Note that some datasets fail to fit the retrieval
    # set on the GPU, so we run them on the CPU
    if torch.cuda.is_available() and not config.get("disable_gpu", True):
        device = "cuda"
    else:
        device = "cpu"
    logger.info(f"Running evaluation on {device}")

    model = model.to(device)
    model.eval()

    with torch.no_grad():
        samples, meta = data_loaders["retrieval"]

        # To use the nan-checks safely, we need make temporary copies of the data
        disable_nan_checks = config._config["disable_nan_checks"]
        with ctxt_mgr(samples, device, disable_nan_checks) as valid:
            output = model(**valid)

        sims = output["cross_view_conf_matrix"].data.cpu().float().numpy()
        dataset = data_loaders.dataset_name
        if challenge_mode:
            split = data_loaders.dataloaders["dataset"].split_name
            prediction_path = config._log_dir / f"{dataset}-{split}-predictions.csv"
            compressed_preds = compress_predictions(
                query_masks=meta["query_masks"],
                sims=sims,
            )
            np.savetxt(prediction_path,
                       compressed_preds,
                       delimiter=',',
                       fmt="%d")
            print(f"Saved similarity matrix predictions to {prediction_path}")
            print(challenge_msg)
            return

        nested_metrics = {}
        for metric in metrics:
            metric_name = metric.__name__
            res = metric(sims, query_masks=meta["query_masks"])
            verbose(epoch=0, metrics=res, name=dataset, mode=metric_name)
            if trainer is not None:
                if not trainer.mini_train:
                    trainer.writer.set_step(step=0, mode="val")
                # avoid tensboard folding by prefixing
                metric_name_ = f"test_{metric_name}"
                trainer.log_metrics(res, metric_name=metric_name_, mode="val")
            nested_metrics[metric_name] = res

    if data_loaders.num_test_captions == 1:
        visualizer.visualize_ranking(
            sims=sims,
            meta=meta,
            epoch=0,
            nested_metrics=nested_metrics,
        )
    log = {}
    for subkey, subval in nested_metrics.items():
        for subsubkey, subsubval in subval.items():
            log[f"test_{subkey}_{subsubkey}"] = subsubval
    for key, value in log.items():
        logger.info(" {:15s}: {}".format(str(key), value))
예제 #4
0
def evaluation(config, logger=None, trainer=None):

    if logger is None:
        logger = config.get_logger('test')

    if getattr(config._args, "eval_from_training_config", False):
        eval_conf = copy.deepcopy(config)
        merge(eval_conf._config,
              config["eval_settings"],
              strategy=Strategy.REPLACE)
        config = eval_conf

    logger.info("Running evaluation with configuration:")
    logger.info(config)

    expert_dims, raw_input_dims = compute_dims(config)
    trn_config = compute_trn_config(config)

    # Set the random initial seeds
    seed = config["seed"]
    logger.info(f"Setting experiment random seed to {seed}")
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)

    # We use cls defaults for backwards compatibility with the MMIT configs.  In the
    # long run this should be handled by the json configs themselves
    cls_defaults = ["train", "val", "tiny", "challenge"]

    data_loaders = config.init(
        name='data_loader',
        module=module_data,
        logger=logger,
        raw_input_dims=raw_input_dims,
        text_feat=config["experts"]["text_feat"],
        text_dim=config["experts"]["text_dim"],
        text_agg=config["experts"]["text_agg"],
        use_zeros_for_missing=config["experts"].get("use_zeros_for_missing",
                                                    False),
        task=config.get("task", "retrieval"),
        cls_partitions=config.get("cls_partitions", cls_defaults),
    )

    model = config.init(
        name='arch',
        module=module_arch,
        trn_config=trn_config,
        expert_dims=expert_dims,
        text_dim=config["experts"]["text_dim"],
        disable_nan_checks=config["disable_nan_checks"],
        task=config.get("task", "retrieval"),
        ce_shared_dim=config["experts"].get("ce_shared_dim", None),
        feat_aggregation=config["data_loader"]["args"]["feat_aggregation"],
        trn_cat=config["data_loader"]["args"].get("trn_cat", 0),
    )
    logger.info(model)

    metrics = [getattr(module_metric, met) for met in config['metrics']]
    visualizer = config.init(
        name='visualizer',
        module=module_vis,
        exp_name=config._exper_name,
        web_dir=config._web_log_dir,
    )
    ckpt_path = config._args.resume
    logger.info(f"Loading checkpoint: {ckpt_path} ...")
    checkpoint = torch.load(ckpt_path)
    state_dict = checkpoint['state_dict']
    if config['n_gpu'] > 1:
        model = torch.nn.DataParallel(model)
    model.load_state_dict(state_dict)

    # prepare model for testing.  Note that some datasets fail to fit the retrieval
    # set on the GPU, so we run them on the CPU
    if torch.cuda.is_available() and not config.get("disable_gpu", True):
        device = "cuda"
    else:
        device = "cpu"
    logger.info(f"Running evaluation on {device}")

    model = model.to(device)
    model.eval()

    with torch.no_grad():
        samples, meta = data_loaders["retrieval"]

        # To use the nan-checks safely, we need make temporary copies of the data
        disable_nan_checks = config._config["disable_nan_checks"]
        with ctxt_mgr(samples, device, disable_nan_checks) as valid:
            output = model(**valid)

        sims = output["cross_view_conf_matrix"].data.cpu().float().numpy()
        dataset = data_loaders.dataset_name
        nested_metrics = {}
        for metric in metrics:
            metric_name = metric.__name__
            res = metric(sims, query_masks=meta["query_masks"])
            verbose(epoch=0, metrics=res, name=dataset, mode=metric_name)
            if trainer is not None:
                if not trainer.mini_train:
                    trainer.writer.set_step(step=0, mode="val")
                # avoid tensboard folding by prefixing
                metric_name_ = f"test_{metric_name}"
                trainer.log_metrics(res, metric_name=metric_name_, mode="val")
            nested_metrics[metric_name] = res

    if data_loaders.num_test_captions == 1:
        visualizer.visualize_ranking(
            sims=sims,
            meta=meta,
            epoch=0,
            nested_metrics=nested_metrics,
        )
    log = {}
    for subkey, subval in nested_metrics.items():
        for subsubkey, subsubval in subval.items():
            log[f"test_{subkey}_{subsubkey}"] = subsubval
    for key, value in log.items():
        logger.info(" {:15s}: {}".format(str(key), value))
예제 #5
0
def run_exp(config):
    
    warnings.filterwarnings('ignore')
    logger = config.get_logger('train')

    leaderboard_path = config._args.leaderboard
    Path(leaderboard_path).parent.mkdir(exist_ok=True, parents=True)
    with open(leaderboard_path, 'a') as f:
        txt_path = f"{config._log_dir}/preds.txt"
        print(txt_path, file=f, flush=True)

    expert_dims, raw_input_dims = compute_dims(config, logger)
    trn_config = compute_trn_config(config)

    if config._args.group_seed:
        seeds = [int(config._args.group_seed)]
    else:
        seeds = [int(x) for x in config._args.seeds.split(",")]

    # set up local filesystem on the cluster
    if socket.gethostname().endswith("cluster"):
        os.system(str(Path.home() / "configure_tmp_data.sh"))

    for ii, seed in enumerate(seeds):
        tic = time.time()
        logger.info(f"{ii + 1}/{len(seeds)} Setting experiment random seed to {seed}")
        set_seeds(seed)
        config["seed"] = seed

        # We use cls defaults for backwards compatibility with the MMIT configs.  In the
        # long run this should be handled by the json configs themselves
        cls_defaults = ["train", "val", "tiny", "challenge"]

        model = config.init(
            name='arch',
            module=module_arch,
            expert_dims=expert_dims,
            text_dim=config["experts"]["text_dim"],
            disable_nan_checks=config["disable_nan_checks"],
            spatial_feats=config["data_loader"]["args"].get("spatial_feats", False),
            task=config.get("task", "retrieval"),
            ce_shared_dim=config["experts"].get("ce_shared_dim", None),
            feat_aggregation=config["data_loader"]["args"]["feat_aggregation"],
            trn_config=trn_config,
            trn_cat=config["data_loader"]["args"].get("trn_cat", 0),
        )
        logger.info(model)

        data_loaders = config.init(
            name='data_loader',
            module=module_data,
            logger=logger,
            raw_input_dims=raw_input_dims,
            text_feat=config["experts"]["text_feat"],
            text_dim=config["experts"]["text_dim"],
            text_agg=config["experts"]["text_agg"],
            use_zeros_for_missing=config["experts"].get("use_zeros_for_missing", False),
            task=config.get("task", "retrieval"),
            cls_partitions=config.get("cls_partitions", cls_defaults)
        )

        if config.get("manual_linear_init", False):
            logger.info("manually setting init for linear layers")
            def init_weights(m):
                if isinstance(m, nn.Linear):
                    torch.nn.init.xavier_uniform(m.weight)
                    m.bias.data.fill_(0.01)
            model.apply(init_weights)

        loss = config.init(name="loss", module=module_loss)
        metrics = [getattr(module_metric, met) for met in config['metrics']]
        trainable_params = filter(lambda p: p.requires_grad, model.parameters())

        if config["optimizer"]["type"] == "RAdam":
            optimizer = config.init('optimizer', radam, trainable_params)
        elif config["optimizer"]["type"] == "Ranger":
            optimizer = config.init('optimizer', ranger, trainable_params)
        elif config["optimizer"]["type"] == "SWATS":
            optimizer = config.init('optimizer', swats, trainable_params)
        else:
            optimizer = config.init('optimizer', torch.optim, trainable_params)

        if config["lr_scheduler"]["type"] == "StepLR":
            lr_scheduler = config.init('lr_scheduler', torch.optim.lr_scheduler,
                                       optimizer)
        else:
            lr_scheduler = config.init('lr_scheduler', cos_restart, optimizer)

        visualizer = config.init(
            name='visualizer',
            module=module_vis,
            exp_name=config._exper_name,
            web_dir=config._web_log_dir,
        )

        trainer = Trainer(
            model,
            loss,
            metrics,
            optimizer,
            config=config,
            data_loaders=data_loaders,
            lr_scheduler=lr_scheduler,
            mini_train=config._args.mini_train,
            disable_nan_checks=config["disable_nan_checks"],
            visualizer=visualizer,
            val_freq=config["trainer"].get("val_freq", 1),
            force_cpu_val=config.get("force_cpu_val", False),
            skip_first_n_saves=config["trainer"].get("skip_first_n_saves", 0),
            include_optim_in_ckpts=config["trainer"].get("include_optim_in_ckpts", 1),
            cache_targets=set(config.get("cache_targets", [])),
        )
        trainer.train()
        best_ckpt_path = config.save_dir / "trained_model.pth"
        duration = time.strftime('%Hh%Mm%Ss', time.gmtime(time.time() - tic))
        logger.info(f"Training took {duration}")

        if config._config.get("eval_settings", False):
            eval_config = copy.deepcopy(config)
            merge(eval_config._config, config["eval_settings"], strategy=Strategy.REPLACE)
            eval_config._args.resume = best_ckpt_path
            evaluation(eval_config, logger=logger, trainer=trainer)

    # If multiple runs were conducted, report relevant statistics
    if len(seeds) > 1:
        log_summary(
            logger=logger,
            log_path=config.log_path,
            eval_mode=config["eval_mode"],
            fixed_num_epochs=config["trainer"]["epochs"],
        )
    print(f"Log file stored at {config.log_path}")

    # Report the location of the "best" checkpoint of the final seeded run (here
    # "best" corresponds to the model with the highest geometric mean over the
    # R@1, R@5 and R@10 metrics when a validation set is used, or simply the final
    # epoch of training for fixed-length schedules).
    print(f"The best performing ckpt can be found at {str(best_ckpt_path)}")