예제 #1
0
    def bert_epoch_step(self, state, current):
        model_to_save = state['model']
        if self.save_best_only:
            if self.monitor_op(current, self.best):
                logger.info(f"\nEpoch {state['epoch']}: \
                    {self.monitor} improved from \
                    {self.best:.5f} to {current:.5f}")
                self.best = current
                state['best'] = self.best
                model_to_save.save_pretrained(str(self.base_path))
                output_config_file = self.base_path / 'config.json'
                with open(str(output_config_file), 'w') as f:
                    f.write(model_to_save.config.to_json_string())
                state.pop("model")
                torch.save(state, self.base_path / 'checkpoint_info.bin')

        else:
            if state['epoch'] % self.epoch_freq == 0:
                save_path = self.base_path / f"checkpoint-epoch-{state['epoch']}"
                save_path.mkdir(exist_ok=True)
                logger.info(f"\nEpoch {state['epoch']}: save model to disk.")
                model_to_save.save_pretrained(save_path)
                output_config_file = save_path / 'config.json'
                with open(str(output_config_file), 'w') as f:
                    f.write(model_to_save.config.to_json_string())
                state.pop("model")
                torch.save(state, save_path / 'checkpoint_info.bin')
예제 #2
0
    async def login(client, username, password):
        def detect(Img):
            logger.info(f"Detect: Detecting...")
            i = transform(Img).unsqueeze(0)
            predict_label1, predict_label2 = model(i)
            predict_label = LabeltoStr(
                [
                    np.argmax(predict_label1.data.numpy()[0]),
                    np.argmax(predict_label2.data.numpy()[0]),
                ]
            )
            logger.info(f"Detect: Result {predict_label}")
            return predict_label

        home = await client.get(DK_URL)
        soup = BeautifulSoup(home.content, "lxml")
        captcha = await client.get(CAPTCHA_URL)
        valid_code = detect(Image.open(captcha))
        execution = soup.find("input", attrs={"type": "hidden", "name": "execution"})
        data = {
            "username": username,
            "password": password,
            "validateCode": valid_code,
            "execution": execution.get("value"),
            "_eventId": "submit",
            "geolocation": "",
        }
        post = await client.post(home.url, data=data)
        logger.info(f"Login: {username} Login...")
        return True if post.url == DK_URL else False
예제 #3
0
 def create_examples(self, lines, example_type, cached_examples_file):
     '''
     Creates examples for data
     '''
     pbar = ProgressBar(n_total=len(lines))
     if cached_examples_file.exists():
         logger.info("Loading examples from cached file %s",
                     cached_examples_file)
         examples = torch.load(cached_examples_file)
     else:
         examples = []
         for i, line in enumerate(lines):
             guid = '%s-%d' % (example_type, i)
             text_a = line[0]
             label = line[1]
             if isinstance(label, str):
                 label = [np.float(x) for x in label.split(",")]
             else:
                 label = [np.float(x) for x in list(label)]
             text_b = None
             example = InputExample(guid=guid,
                                    text_a=text_a,
                                    text_b=text_b,
                                    label=label)
             examples.append(example)
             pbar.batch_step(step=i, info={}, bar_type='create examples')
         logger.info("Saving examples into cached file %s",
                     cached_examples_file)
         torch.save(examples, cached_examples_file)
     return examples
예제 #4
0
def start(update, context):
    message = update.message
    chat = message.forward_from_chat if message.forward_from_chat else message.chat
    jobs = [t.name for t in context.job_queue.jobs()]
    message.reply_markdown(
        f"Usage:\n/add <username> <password> \[region-num]\nregin-num: \n1 - 上海\n2 - 湖北\n3 - 其他中国地区\n5 - 国外\n/del <username>\nCHAT ID: `{chat.id}`\nCurrent Jobs: {jobs}"
    )
    logger.info(f"Start command: Current Jobs: {jobs}")
예제 #5
0
def detect(Img):
    logger.info(f"Detect: Detecting...")
    i = transform(Img).unsqueeze(0)
    predict_label1, predict_label2 = model(i)
    predict_label = LabeltoStr([
        np.argmax(predict_label1.data.numpy()[0]),
        np.argmax(predict_label2.data.numpy()[0]),
    ])
    logger.info(f"Detect: Result {predict_label}")
    return predict_label
예제 #6
0
def add(update, context):
    message = update.message
    chat = message.chat
    data = message.text.split(" ")
    if len(data) < 3:
        message.reply_text("用法:\n"
                           "添加数字平台账户:\n"
                           "/add <学号> <密码> \\[地区]\n"
                           "地区:\n"
                           "1 - 上海\n"
                           "2 - 湖北\n"
                           "3 - 其他中国地区\n"
                           "5 - 国外")
        return
    username, password = data[1], data[2]
    region = 1 if len(data) <= 3 else data[3]
    chat_id = chat.id if len(data) <= 4 else data[4]
    for job in context.job_queue.get_jobs_by_name(username):
        job.schedule_removal()
    jobs = [t.name for t in context.job_queue.jobs()]
    context.job_queue.run_daily(
        checkin_queue,
        datetime.time(
            0,
            min(3 + len(jobs), 59),
            SystemRandom().randrange(60),
            SystemRandom().randrange(1000000),
            datetime.timezone(datetime.timedelta(hours=8)),
        ),
        context={
            "username": username,
            "password": password,
            "region": region,
            "chat": chat_id,
        },
        name=username,
    )
    jobs.append(username)
    context.job_queue.run_once(
        checkin_queue,
        1,
        context={
            "username": username,
            "password": password,
            "region": region,
            "chat": chat_id,
        },
    )
    message.reply_text(
        f"添加成功!\n学号: {username}\n密码: {password}\n地区: {region}\n现在的任务列表: {jobs}"
    )
    logger.info(f"Added Jobs: {username}, Current Jobs: {jobs}")
예제 #7
0
def main():
    parser = get_argparse()
    parser.add_argument("--fine_tunning_model",
                        type=str,
                        required=True,
                        help="fine_tuning model path")
    args = parser.parse_args()
    print(
        json.dumps(vars(args),
                   sort_keys=True,
                   indent=4,
                   separators=(', ', ': '),
                   ensure_ascii=False))
    init_logger(log_file="./log/{}.log".format(
        time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())))
    seed_everything(args.seed)

    # save path
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)

    # device
    args.device = torch.device(
        "cuda:0" if torch.cuda.is_available() else "cpu")

    # tokenizer
    tokenizer = BertTokenizerFast.from_pretrained(args.model_name_or_path)

    # Dataset & Dataloader
    test_dataset = MrcDataset(args,
                              json_path="./data/test1.json",
                              tokenizer=tokenizer)

    test_iter = DataLoader(test_dataset,
                           shuffle=False,
                           batch_size=args.per_gpu_eval_batch_size,
                           collate_fn=collate_fn,
                           num_workers=24)

    logger.info("The nums of the test_dataset examples is {}".format(
        len(test_dataset.examples)))
    logger.info("The nums of the test_dataset features is {}".format(
        len(test_dataset)))

    # model
    model = MRC_model(args.model_name_or_path)
    model.to(args.device)
    model.load_state_dict(torch.load(args.fine_tunning_model))

    # predict test
    model.eval()
    evaluate(args, test_iter, model, prefix="test")
 def create_dataset(self, features, is_sorted=False):
     if is_sorted:
         logger.info("sorted data by th length of input")
         features = sorted(features,
                           key=lambda x: x.input_len,
                           reverse=True)
     all_input_ids = torch.tensor([f.input_ids for f in features],
                                  dtype=torch.long)
     all_label_ids = torch.tensor([f.label_ids for f in features],
                                  dtype=torch.long)
     dataset = TensorDataset(all_input_ids, all_input_ids, all_input_ids,
                             all_label_ids)
     return dataset
예제 #9
0
def load_json(filename="config.json"):
    try:
        with open(filename, "r") as file:
            config = json.load(file)
    except FileNotFoundError:
        try:
            filename = f"{os.path.split(os.path.realpath(__file__))[0]}/{filename}"
            with open(filename, "r") as file:
                config = json.load(file)
        except FileNotFoundError:
            logger.exception(f"Cannot find {filename}.")
            sys.exit(1)
    logger.info(f"Json: Loaded {filename}")
    return config
예제 #10
0
 def train_val_split(self, X: list, y: list, valid_size: float,
                     data_name=None, data_dir=None, save=True):
     logger.info('split train data into train and valid')
     Xy = []
     for i in range(len(X)):
         Xy.append((X[i], y[i]))
     train, valid = train_test_split(
         Xy, test_size=valid_size, random_state=42)
     if save:
         train_path = data_dir / "{}.train.pkl".format(data_name)
         valid_path = data_dir / "{}.valid.pkl".format(data_name)
         save_pickle(data=train, file_path=train_path)
         save_pickle(data=valid, file_path=valid_path)
     return train, valid
예제 #11
0
def checkin(s, username, region):
    data = {
        "xgh": username,
        "lon": "",
        "lat": "",
        "region": region,
        "rylx": 4,
        "status": 0,
    }
    s.post(CHECKIN_URL, data=data)
    logger.info(f"Checkin: {username} Checkin...")
    home = s.get(DK_URL)
    soup = BeautifulSoup(home.content, "lxml")
    return (True if "success" in str(
        soup.find("div", attrs={"class": "form-group"})) else False)
예제 #12
0
def build_filter_sets(imgs, num_classes, mode, id2trainid=None):
    if not (mode == "train"):
        return imgs

    json_fn = os.path.join(cfg.DATASET.PCL_DIR, "filter_set.json")
    if os.path.isfile(json_fn):
        logger.info("[*] Loading Filter sets file: {}".format(json_fn))
        with open(json_fn, "r") as f:
            records = json.load(f)
    else:
        logger.info("[*] Didn\'t find {}, so building it.".format(json_fn))
        records = generate_filter_all(imgs, num_classes, id2trainid)
        with open(json_fn, "w") as f:
            json.dump(records, f, indent=4)

    return records
예제 #13
0
def login(s, username, password):
    home = s.get(DK_URL)
    soup = BeautifulSoup(home.content, "lxml")
    captcha = s.get(CAPTCHA_URL, stream=True)
    valid_code = detect(Image.open(captcha.raw))
    execution = soup.find("input", attrs={"type": "hidden", "name": "execution"})
    data = {
        "username": username,
        "password": password,
        "validateCode": valid_code,
        "execution": execution.get("value"),
        "_eventId": "submit",
        "geolocation": "",
    }
    post = s.post(home.url, data=data)
    logger.info(f"Login: {username} Login...")
    return True if post.url == DK_URL else False
예제 #14
0
def checkin_queue(context):
    job = context.job
    username, password, region, chat = (
        job.context.get("username"),
        job.context.get("password"),
        job.context.get("region"),
        job.context.get("chat"),
    )
    s = requests.Session()
    s.headers.update({
        "User-Agent":
        "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.87 Safari/537.36"
    })
    retry_count = 5
    for i in range(retry_count):
        try:
            if login(s, username, password):
                logger.info(f"Login: {username} Success!")
                break
        except:
            continue
        logger.warning(f"Login: {username} Fail {i}")
    for i in range(retry_count):
        try:
            if checkin(s, username, region):
                logger.info(f"Checkin: {username} Success!")
                context.bot.send_message(chat,
                                         f"任务: {username} 执行成功!",
                                         disable_notification=True)
                return
        except:
            continue
        logger.warning(f"Checkin: {username} Fail {i}")
    context.bot.send_message(chat, f"任务: {username} 执行失败!预计下个小时将继续执行。")
    context.job_queue.run_once(
        checkin_queue,
        SystemRandom().randint(1800, 3600),
        context={
            "username": username,
            "password": password,
            "region": region,
            "chat": chat,
        },
    )
    logger.warning(f"Job: {username} fail -> run in next hour")
    def save_pretrained(self, save_directory):
        """ Save a model and its configuration file to a directory, so that it
            can be re-loaded using the `:func:`~transformers.PreTrainedModel.from_pretrained`` class method.
        """
        assert os.path.isdir(save_directory), "\
        Saving path should be a directory where the model and configuration can be saved"

        # Only save the model itself if we are using distributed training
        model_to_save = self.module if hasattr(self, 'module') else self

        # Save configuration file
        # model_to_save.config.save_pretrained(save_directory)

        # If we save using the predefined names,
        # we can load using `from_pretrained`
        output_model_file = os.path.join(save_directory, "pytorch_model.bin")
        torch.save(model_to_save.state_dict(), output_model_file)
        logger.info("Model weights saved in {}".format(output_model_file))
예제 #16
0
def main():
    model = ResNet(ResidualBlock)
    model.eval()
    model.load_state_dict(torch.load("model/best.pkl", map_location=device))
    logger.info("Valid: loaded model")

    predict_dataloader = get_predict_data_loader()

    for i, (images, labels) in enumerate(predict_dataloader):
        predict_label1, predict_label2 = model(images)
        predict_label = LabeltoStr([
            np.argmax(predict_label1.data.numpy()[0]),
            np.argmax(predict_label2.data.numpy()[0]),
        ])
        true_label = LabeltoStr(labels.data.numpy()[0])
        logger.info(
            f"Test: {i}, Expect: {true_label}, Predict: {predict_label}, Result: {True if true_label == predict_label else False}"
        )
예제 #17
0
def start(update, context):
    message = update.message
    jobs = [t.name for t in context.job_queue.jobs()]
    message.reply_text("用法:\n"
                       "添加数字平台账户:\n"
                       "/add <学号> <密码> [地区]\n"
                       "地区(默认上海):\n"
                       "1 - 上海\n"
                       "2 - 湖北\n"
                       "3 - 其他中国地区\n"
                       "5 - 国外\n"
                       "移除数字平台账户:\n"
                       "/del <学号>\n"
                       "立即运行:\n"
                       "/run [学号]\n"
                       f"现在的任务列表: {jobs}")
    logger.info(
        f"Start command: Current Jobs: {[t.context for t in context.job_queue.jobs()]}"
    )
예제 #18
0
def delete(update, context):
    message = update.message
    chat = message.chat
    data = message.text.split(" ")
    if len(data) < 2:
        message.reply_text("用法:\n移除数字平台账户:\n/del <学号>")
        return
    username = data[1]
    deleted_flag = False
    jobs = [t.name for t in context.job_queue.jobs()]
    for job in context.job_queue.get_jobs_by_name(username):
        if job.context.get("chat") in [chat.id, ADMIN]:
            deleted_flag = True
            job.schedule_removal()
            logger.info(f"Deleted Jobs: {username}, Current Jobs: {jobs}")
    if deleted_flag:
        message.reply_text(f"删除成功!\n学号: {username}\n现在的任务列表: {jobs}")
    else:
        message.reply_text("您没有删除此账户的权限.")
예제 #19
0
파일: basebot.py 프로젝트: tingod/1bot
    def go(self):

        if self.IS_HEROKU_MODE:
            logger.info('Heroku Mode start')
            # Get Heroku app name from config vars.
            name = os.environ.get('APP_NAME')
            # Get Heroku app port from config vars.
            port = os.environ.get('PORT')
            webhook_url = "https://{}.herokuapp.com/{}".format(name, self.TOKEN)
            self.updater.start_webhook(listen="0.0.0.0",
                                       # port=int(port),
                                       port=80,
                                       url_path=self.TOKEN)
            self.updater.bot.setWebhook(webhook_url)
        else:
            logger.info('Local Mode start')
            self.updater.start_polling()

        self.updater.idle()
예제 #20
0
def build_filter_sets(imgs, num_classes, mode, id2trainid=None):
    if not (mode == "train"):
        return imgs

    json_fn = os.path.join(cfg.DATASET.PCL_DIR, "classwised_set.json")
    if os.path.isfile(json_fn):
        logger.info("[*] Loading Class-wised file: {}".format(json_fn))
        with open(json_fn, "r") as f:
            records = json.load(f)
        records = {int(k): v for k, v in records.items()}
        logger.info("[*] Found {} classes.".format(len(records)))
    else:
        logger.info("[*] Didn\'t find {}, so building it.".format(json_fn))
        records = uniform.generate_classwised_all(imgs, num_classes, id2trainid)
        with open(json_fn, "w") as f:
            json.dump(records, f, indent=4)

    loss_fn = os.path.join(cfg.DATASET.PCL_DIR, "loss_info.json")
    if os.path.isfile(loss_fn):
        logger.info("[*] Loading Loss info file: {}".format(loss_fn))
        with open(loss_fn, "r") as f:
            loss_info = json.load(f)

        new_records = defaultdict(list)
        for k, v in records.items():
            for item in v:
                img_n = os.path.basename(item[0]).split(".")[0]
                loss = loss_info[img_n]["ce_loss"]
                new_records[k].append((*item, loss))

    else:
        logger.info("[*] Didn\'t find {}, so didn\'t use it.")

        new_records = defaultdict(list)
        for k, v in records.items():
            for item in v:
                new_records[k].append((*item, 0))

    records = new_records

    return records
예제 #21
0
def build_epoch(imgs, records, num_classes, mode):
    if not (mode == "train"):
        return imgs

    one_class_filter_pct = cfg.DATASET.ONE_CLASS_FILTER_PCT
    logger.info("[*] One Class Filter Percentage: {}".format(
        str(one_class_filter_pct)))

    num_imgs = int(len(imgs))
    logger.info("[*] Number of images: {}".format(str(num_imgs)))

    imgs_one_classes = records["True"]

    num_one_class = int(len(imgs_one_classes) * one_class_filter_pct)
    imgs_multi_classes = records["False"]

    one_class_uniform = ramdom_sampling(records["True"], num_one_class)

    imgs_multi_classes.extend(one_class_uniform)

    return imgs_multi_classes
예제 #22
0
    def epoch_step(self, state, current):
        '''
        :param state: 需要保存的信息
        :param current: 当前判断指标
        :return:
        '''
        if self.save_best_only:
            if self.monitor_op(current, self.best):
                logger.info(f"\nEpoch {state['epoch']}: \
                    {self.monitor} improved from \
                    {self.best:.5f} to {current:.5f}")
                self.best = current
                state['best'] = self.best
                best_path = self.base_path / self.model_name
                torch.save(state, str(best_path))

        else:
            filename = self.base_path / f"epoch_{state['epoch']}_{state[self.monitor]}_{self.arch}_model.bin"
            if state['epoch'] % self.epoch_freq == 0:
                logger.info(f"\nEpoch {state['epoch']}: save model to disk.")
                torch.save(state, str(filename))
예제 #23
0
def delete(update, context):
    message = update.message
    chat = message.chat
    data = message.text.split(" ")
    if len(data) < 2:
        message.reply_text("Usage:\n/del <username>")
        return
    username = data[1]
    deleted_flag = False
    jobs = [t.name for t in context.job_queue.jobs()]
    for job in context.job_queue.get_jobs_by_name(username):
        if job.context.get("chat") == chat.id:
            deleted_flag = True
            job.schedule_removal()
            logger.info(f"Deleted Jobs: {username}, Current Jobs: {jobs}")
    if deleted_flag:
        message.reply_text(
            f"Deleted successfully!\nusername: {username}\nCurrent Jobs: {jobs}"
        )
    else:
        message.reply_text("You cannot delete it.")
예제 #24
0
def build_epoch(imgs, records, num_classes, mode):
    if not (mode == "train"):
        return imgs

    logger.info("[*] Filter the data with high loss.")
    records = loss_filter(records, cfg.DATASET.LOSS_UPPER_BOUND)

    logger.info("[*] Sampling the image with max num of image.")

    imgs_sampling = []
    class_counter = 0
    for class_id in range(num_classes):
        num_sampling = cfg.DATASET.NUM_IMG_PER_CLASS
        records_len = len(records[class_id])
        if records_len == 0:
            pass
        else:
            class_records = random_sampling(records[class_id], num_sampling)
            imgs_sampling.extend(class_records)
            class_counter += 1

    logger.info("[*] Sampling including {} classes.".format(class_counter))
    imgs_sampling = filter_duplicate(imgs_sampling)

    return imgs_sampling
예제 #25
0
def add(update, context):
    message = update.message
    chat = message.chat
    data = message.text.split(" ")
    if len(data) < 3:
        message.reply_text(
            "Usage:\n/add <username> <password> [region-num]\nregin-num: \n1 - 上海\n2 - 湖北\n3 - 其他中国地区\n5 - 国外\n"
        )
        return
    username, password = data[1], data[2]
    region = 1 if len(data) == 3 else data[3]
    for job in context.job_queue.get_jobs_by_name(username):
        job.schedule_removal()
    jobs = [t.name for t in context.job_queue.jobs()]
    context.job_queue.run_once(
        checkin_queue,
        1,
        context={
            "username": username,
            "password": password,
            "region": region,
            "chat": chat.id,
        },
    )
    context.job_queue.run_daily(
        checkin_queue,
        datetime.time(
            0,
            min(2 + len(jobs), 59),
            0,
            0,
            datetime.timezone(datetime.timedelta(hours=8)),
        ),
        context={"username": username, "password": password, "chat": chat.id},
        name=username,
    )
    message.reply_text(
        f"Added successfully!\nusername: {username}\npassword: {password}\nCurrent Jobs: {jobs}"
    )
    logger.info(f"Added Jobs: {username}, Current Jobs: {jobs}")
예제 #26
0
def build_epoch(imgs, records, num_classes, mode):
    """
    Generate an epoch of image using uniform sampling
    Will not apply uniform sampling if not train or class uniform is off.

    Args:
        imgs: list of images: (img_fn, mask_fn)
        records: dict of classes which is list including img_fn, mask_fn, class_id
        num_classes: int
        mode: str
    Returns:
        imgs: list of images
    """
    class_uniform_pct = cfg.DATASET.CLASS_UNIFORM_PCT
    if not (mode == "train" and class_uniform_pct):
        return imgs

    logger.info("[*] Class Uniform Percentage: {}".format(
        str(class_uniform_pct)))
    num_epoch = int(len(imgs))

    logger.info("[*] Class Uniform items per Epoch: {}".format(str(num_epoch)))
    num_per_class = int((num_epoch * class_uniform_pct) / num_classes)
    class_uniform_count = num_per_class * num_classes
    num_rand = num_epoch - class_uniform_count

    imgs_uniform = ramdom_sampling(imgs, num_rand)

    for class_id in range(num_classes):
        num_per_class_biased = num_per_class
        records_len = len(records[class_id])
        if records_len == 0:
            pass
        else:
            class_records = ramdom_sampling(records[class_id],
                                            num_per_class_biased)
            imgs_uniform.extend(class_records)

    return imgs_uniform
예제 #27
0
def checkin_queue(context):
    job = context.job
    username, password, region, chat = (
        job.context.get("username"),
        job.context.get("password"),
        job.context.get("region"),
        job.context.get("chat"),
    )
    s = requests.Session()
    s.headers.update(
        {
            "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.87 Safari/537.36"
        }
    )
    retry_count = 5
    message = context.bot.send_message(chat, f"Job: Running for {username}")
    for i in range(retry_count):
        result = login(s, username, password)
        if result:
            append_text = f"Login: {username} Successful!"
            logger.info(append_text)
            message = message.edit_text(f"{message.text}\n{append_text}")
            break
        else:
            append_text = f"Login: {username} Fail {i}"
            logger.warning(append_text)
            message = message.edit_text(f"{message.text}\n{append_text}")
    for i in range(retry_count):
        result = checkin(s, username, region)
        if result:
            append_text = f"Checkin: {username} Successful!"
            logger.info(append_text)
            message = message.edit_text(f"{message.text}\n{append_text}")
            break
        else:
            append_text = f"Checkin: {username} Fail {i}"
            logger.warning(append_text)
            message = message.edit_text(f"{message.text}\n{append_text}")
예제 #28
0
def checkin():
    data = {
        "xgh": USERNAME,
        "lon": "",
        "lat": "",
        "region": 1,
        "rylx": 4,
        "status": 0,
    }
    post = s.post(CHECKIN_URL, data=data)
    data = {
        "xgh": USERNAME,
        "alwaysinsh": 1,
        "fromaddr": "",
        "fromtime": "",
        "totime": "",
        "jtgj": "",
        "status": 0
    }
    post = s.post(ARRSH_URL, data=data)
    logger.info("Checkin: Checkin...")
    soup = BeautifulSoup(post.content, "lxml")
    return (True if "success" in str(
        soup.find("div", attrs={"class": "form-group"})) else False)
예제 #29
0
def main():
    model = ResNet(ResidualBlock).to(device)
    model.reload()
    model.train()
    logger.info("Train: Init model")
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    scheduler_after = torch.optim.lr_scheduler.StepLR(optimizer,
                                                      step_size=30,
                                                      gamma=0.5)
    scheduler = GradualWarmupScheduler(optimizer,
                                       8,
                                       10,
                                       after_scheduler=scheduler_after)

    train_dataloader = get_train_data_loader()
    loss_best = 1
    for epoch in range(num_epochs):
        for i, (images, labels) in enumerate(tqdm(train_dataloader)):
            images = images.to(device)
            labels = labels.to(device)
            labels = labels.long()
            label1, label2 = labels[:, 0], labels[:, 1]

            optimizer.zero_grad()
            y1, y2 = model(images)
            loss1, loss2 = criterion(y1, label1), criterion(y2, label2)
            loss = loss1 + loss2
            # outputs = model(images)
            # loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
        scheduler.step()
        logger.info(f"epoch: {epoch}, step: {i}, loss: {loss.item()}")
        model.save()
        if loss_best > loss.item():
            loss_best = loss.item()
            torch.save(model.state_dict(), "model/best.pkl")
            logger.info("Train: Saved best model")
    torch.save(model.state_dict(), "model/final.pkl")
    logger.info("Train: Saved last model")
예제 #30
0
def build_classwised_sets(imgs, num_classes, mode, id2trainid=None):
    """
    Build the Class-wised image sets
    """
    if not (mode == "train" and cfg.DATASET.CLASS_UNIFORM_PCT):
        return []

    json_fn = os.path.join(cfg.DATASET.PCL_DIR, "classwised_set.json")
    if os.path.isfile(json_fn):
        logger.info("[*] Loading Class-wised file: {}".format(json_fn))
        with open(json_fn, "r") as f:
            records = json.load(f)
        records = {int(k): v for k, v in records.items()}
        logger.info("[*] Found {} classes".format(len(records)))
    else:
        logger.info("[*] Didn\'t find {}, so building it.".format(json_fn))
        records = generate_classwised_all(imgs, num_classes, id2trainid)
        with open(json_fn, "w") as f:
            json.dump(records, f, indent=4)

    return records