예제 #1
0
    def __init__(self, train_X=None, train_Y=None, valid_X=None, valid_Y=None, test_X=None, test_Y=None, args=None, logger=None):
        # Output logger
        self.logger = logger
        self.outdir = args.get("output_path", defaults["output_path"])
        if self.outdir[-1] != '/':
            self.outdir = self.outdir+'/'
            
        data.mkdir_p(self.outdir)
        
        # Configuration
        config_filename = self.outdir+'config'
        logger.log('Saving config')
        with open(config_filename, 'w') as f:
            f.write(str(args))
 
        # Input data - make sure it is a list of shared datasets if it isn't. THIS WILL KEEP 'NONE' AS 'NONE' no need to worry :)
        self.train_X = raise_to_list(train_X)
        self.train_Y = raise_to_list(train_Y)
        self.valid_X = raise_to_list(valid_X)
        self.valid_Y = raise_to_list(valid_Y)
        self.test_X  = raise_to_list(test_X)
        self.test_Y  = raise_to_list(test_Y)
                
        # variables from the dataset that are used for initialization and image reconstruction
        if self.train_X is None:
            self.N_input = args.get("input_size")
            if args.get("input_size") is None:
                raise AssertionError("Please either specify input_size in the arguments or provide an example train_X for input dimensionality.")
        else:
            self.N_input = self.train_X[0].get_value(borrow=True).shape[1]
        
        self.is_image = args.get('is_image', defaults['is_image'])
        if self.is_image:
            (_h, _w) = closest_to_square_factors(self.N_input)
            self.image_width  = args.get('width', _w)
            self.image_height = args.get('height', _h)
            
        #######################################
        # Network and training specifications #
        #######################################
        self.layers          = args.get('layers', defaults['layers']) # number hidden layers
        self.walkbacks       = args.get('walkbacks', defaults['walkbacks']) # number of walkbacks
        self.learning_rate   = theano.shared(cast32(args.get('learning_rate', defaults['learning_rate'])))  # learning rate
        self.init_learn_rate = cast32(args.get('learning_rate', defaults['learning_rate']))
        self.momentum        = theano.shared(cast32(args.get('momentum', defaults['momentum']))) # momentum term
        self.annealing       = cast32(args.get('annealing', defaults['annealing'])) # exponential annealing coefficient
        self.noise_annealing = cast32(args.get('noise_annealing', defaults['noise_annealing'])) # exponential noise annealing coefficient
        self.batch_size      = args.get('batch_size', defaults['batch_size'])
        self.gsn_batch_size = args.get('gsn_batch_size', defaults['gsn_batch_size'])
        self.n_epoch         = args.get('n_epoch', defaults['n_epoch'])
        self.early_stop_threshold = args.get('early_stop_threshold', defaults['early_stop_threshold'])
        self.early_stop_length = args.get('early_stop_length', defaults['early_stop_length'])
        self.save_frequency  = args.get('save_frequency', defaults['save_frequency'])
        
        self.noiseless_h1           = args.get('noiseless_h1', defaults["noiseless_h1"])
        self.hidden_add_noise_sigma = theano.shared(cast32(args.get('hidden_add_noise_sigma', defaults["hidden_add_noise_sigma"])))
        self.input_salt_and_pepper  = theano.shared(cast32(args.get('input_salt_and_pepper', defaults["input_salt_and_pepper"])))
        self.input_sampling         = args.get('input_sampling', defaults["input_sampling"])
        self.vis_init               = args.get('vis_init', defaults['vis_init'])
        self.initialize_gsn         = args.get('initialize_gsn', defaults['initialize_gsn'])
        self.hessian_free           = args.get('hessian_free', defaults['hessian_free'])
        
        self.hidden_size = args.get('hidden_size', defaults['hidden_size'])
        self.layer_sizes = [self.N_input] + [self.hidden_size] * self.layers # layer sizes, from h0 to hK (h0 is the visible layer)
        self.recurrent_hidden_size = args.get('recurrent_hidden_size', defaults['recurrent_hidden_size'])
        
        self.f_recon = None
        self.f_noise = None
        
        # Activation functions!
        # For the GSN:
        if args.get('hidden_activation') is not None:
            log.maybeLog(self.logger, 'Using specified activation for GSN hiddens')
            self.hidden_activation = args.get('hidden_activation')
        elif args.get('hidden_act') is not None:
            self.hidden_activation = get_activation_function(args.get('hidden_act'))
            log.maybeLog(self.logger, 'Using {0!s} activation for GSN hiddens'.format(args.get('hidden_act')))
        else:
            log.maybeLog(self.logger, "Using default activation for GSN hiddens")
            self.hidden_activation = defaults['hidden_activation']
            
        # For the RNN:
        if args.get('recurrent_hidden_activation') is not None:
            log.maybeLog(self.logger, 'Using specified activation for RNN hiddens')
            self.recurrent_hidden_activation = args.get('recurrent_hidden_activation')
        elif args.get('recurrent_hidden_act') is not None:
            self.recurrent_hidden_activation = get_activation_function(args.get('recurrent_hidden_act'))
            log.maybeLog(self.logger, 'Using {0!s} activation for RNN hiddens'.format(args.get('recurrent_hidden_act')))
        else:
            log.maybeLog(self.logger, "Using default activation for RNN hiddens")
            self.recurrent_hidden_activation = defaults['recurrent_hidden_activation']
            
        # Visible layer activation
        if args.get('visible_activation') is not None:
            log.maybeLog(self.logger, 'Using specified activation for visible layer')
            self.visible_activation = args.get('visible_activation')
        elif args.get('visible_act') is not None:
            self.visible_activation = get_activation_function(args.get('visible_act'))
            log.maybeLog(self.logger, 'Using {0!s} activation for visible layer'.format(args.get('visible_act')))
        else:
            log.maybeLog(self.logger, 'Using default activation for visible layer')
            self.visible_activation = defaults['visible_activation']
            
        # Cost function!
        if args.get('cost_function') is not None:
            log.maybeLog(self.logger, '\nUsing specified cost function for GSN training\n')
            self.cost_function = args.get('cost_function')
        elif args.get('cost_funct') is not None:
            self.cost_function = get_cost_function(args.get('cost_funct'))
            log.maybeLog(self.logger, 'Using {0!s} for cost function'.format(args.get('cost_funct')))
        else:
            log.maybeLog(self.logger, '\nUsing default cost function for GSN training\n')
            self.cost_function = defaults['cost_function']
        
        ############################
        # Theano variables and RNG #
        ############################
        self.X = T.fmatrix('X') #single (batch) for training gsn
        self.Xs = T.fmatrix('Xs') #sequence for training rnn-gsn
        self.MRG = RNG_MRG.MRG_RandomStreams(1)
        
        ###############
        # Parameters! #
        ###############
        #gsn
        self.weights_list = [get_shared_weights(self.layer_sizes[i], self.layer_sizes[i+1], name="W_{0!s}_{1!s}".format(i,i+1)) for i in range(self.layers)] # initialize each layer to uniform sample from sqrt(6. / (n_in + n_out))
        self.bias_list    = [get_shared_bias(self.layer_sizes[i], name='b_'+str(i)) for i in range(self.layers + 1)] # initialize each layer to 0's.
        
        #recurrent
        self.recurrent_to_gsn_weights_list = [get_shared_weights(self.recurrent_hidden_size, self.layer_sizes[layer], name="W_u_h{0!s}".format(layer)) for layer in range(self.layers+1) if layer%2 != 0]
        self.W_u_u = get_shared_weights(self.recurrent_hidden_size, self.recurrent_hidden_size, name="W_u_u")
        self.W_x_u = get_shared_weights(self.N_input, self.recurrent_hidden_size, name="W_x_u")
        self.recurrent_bias = get_shared_bias(self.recurrent_hidden_size, name='b_u')
        
        #lists for use with gradients
        self.gsn_params = self.weights_list + self.bias_list
        self.u_params   = [self.W_u_u, self.W_x_u, self.recurrent_bias]
        self.params     = self.gsn_params + self.recurrent_to_gsn_weights_list + self.u_params
        
        ###########################################################
        #           load initial parameters of gsn                #
        ###########################################################
        self.train_gsn_first = False
        if self.initialize_gsn:
            params_to_load = 'gsn_params_epoch_30.pkl'
            if not os.path.isfile(params_to_load):
                self.train_gsn_first = True 
            else:
                log.maybeLog(self.logger, "\nLoading existing GSN parameters\n")
                loaded_params = cPickle.load(open(params_to_load,'r'))
                [p.set_value(lp.get_value(borrow=False)) for lp, p in zip(loaded_params[:len(self.weights_list)], self.weights_list)]
                [p.set_value(lp.get_value(borrow=False)) for lp, p in zip(loaded_params[len(self.weights_list):], self.bias_list)]
                
        if self.initialize_gsn:
            self.gsn_args = {'weights_list':       self.weights_list,
                             'bias_list':          self.bias_list,
                             'hidden_activation':  self.hidden_activation,
                             'visible_activation': self.visible_activation,
                             'cost_function':      self.cost_function,
                             'layers':             self.layers,
                             'walkbacks':          self.walkbacks,
                             'hidden_size':        self.hidden_size,
                             'learning_rate':      args.get('learning_rate', defaults['learning_rate']),
                             'momentum':           args.get('momentum', defaults['momentum']),
                             'annealing':          self.annealing,
                             'noise_annealing':    self.noise_annealing,
                             'batch_size':         self.gsn_batch_size,
                             'n_epoch':            self.n_epoch,
                             'early_stop_threshold':   self.early_stop_threshold,
                             'early_stop_length':      self.early_stop_length,
                             'save_frequency':         self.save_frequency,
                             'noiseless_h1':           self.noiseless_h1,
                             'hidden_add_noise_sigma': args.get('hidden_add_noise_sigma', defaults['hidden_add_noise_sigma']),
                             'input_salt_and_pepper':  args.get('input_salt_and_pepper', defaults['input_salt_and_pepper']),
                             'input_sampling':      self.input_sampling,
                             'vis_init':            self.vis_init,
                             'output_path':         self.outdir+'gsn/',
                             'is_image':            self.is_image,
                             'input_size':          self.N_input
                             }
            
        ############
        # Sampling #
        ############
        # the input to the sampling function
        X_sample = T.fmatrix("X_sampling")
        self.network_state_input = [X_sample] + [T.fmatrix("H_sampling_"+str(i+1)) for i in range(self.layers)]
       
        # "Output" state of the network (noisy)
        # initialized with input, then we apply updates
        self.network_state_output = [X_sample] + self.network_state_input[1:]
        visible_pX_chain = []
    
        # ONE update
        _add_noise = True
        log.maybeLog(self.logger, "Performing one walkback in network state sampling.")
        GSN.update_layers(self.network_state_output,
                          self.weights_list,
                          self.bias_list,
                          visible_pX_chain, 
                          _add_noise,
                          self.noiseless_h1,
                          self.hidden_add_noise_sigma,
                          self.input_salt_and_pepper,
                          self.input_sampling,
                          self.MRG,
                          self.visible_activation,
                          self.hidden_activation,
                          self.logger)
    
               
        #############################################
        #      Build the graphs for the RNN-GSN     #
        #############################################
        # If `x_t` is given, deterministic recurrence to compute the u_t. Otherwise, first generate
        def recurrent_step(x_t, u_tm1, add_noise):
            # Make current guess for hiddens based on U
            for i in range(self.layers):
                if i%2 == 0:
                    log.maybeLog(self.logger, "Using {0!s} and {1!s}".format(self.recurrent_to_gsn_weights_list[(i+1)/2],self.bias_list[i+1]))
            h_t = T.concatenate([self.hidden_activation(self.bias_list[i+1] + T.dot(u_tm1, self.recurrent_to_gsn_weights_list[(i+1)/2])) for i in range(self.layers) if i%2 == 0],axis=0)
            
            generate = x_t is None
            if generate:
                pass
            
            # Make a GSN to update U
    #         chain, hs = gsn.build_gsn(x_t, weights_list, bias_list, add_noise, state.noiseless_h1, state.hidden_add_noise_sigma, state.input_salt_and_pepper, state.input_sampling, MRG, visible_activation, hidden_activation, walkbacks, logger)
    #         htop_t = hs[-1]
    #         denoised_x_t = chain[-1]
            # Update U
    #         ua_t = T.dot(denoised_x_t, W_x_u) + T.dot(htop_t, W_h_u) + T.dot(u_tm1, W_u_u) + recurrent_bias
            ua_t = T.dot(x_t, self.W_x_u) + T.dot(u_tm1, self.W_u_u) + self.recurrent_bias
            u_t = self.recurrent_hidden_activation(ua_t)
            return None if generate else [ua_t, u_t, h_t]
        
        log.maybeLog(self.logger, "\nCreating recurrent step scan.")
        # For training, the deterministic recurrence is used to compute all the
        # {h_t, 1 <= t <= T} given Xs. Conditional GSNs can then be trained
        # in batches using those parameters.
        u0 = T.zeros((self.recurrent_hidden_size,))  # initial value for the RNN hidden units
        (ua, u, h_t), updates_recurrent = theano.scan(fn=lambda x_t, u_tm1, *_: recurrent_step(x_t, u_tm1, True),
                                                           sequences=self.Xs,
                                                           outputs_info=[None, u0, None],
                                                           non_sequences=self.params)
        
        log.maybeLog(self.logger, "Now for reconstruction sample without noise")
        (_, _, h_t_recon), updates_recurrent_recon = theano.scan(fn=lambda x_t, u_tm1, *_: recurrent_step(x_t, u_tm1, False),
                                                           sequences=self.Xs,
                                                           outputs_info=[None, u0, None],
                                                           non_sequences=self.params)
        # put together the hiddens list
        h_list = [T.zeros_like(self.Xs)]
        for layer, w in enumerate(self.weights_list):
            if layer%2 != 0:
                h_list.append(T.zeros_like(T.dot(h_list[-1], w)))
            else:
                h_list.append((h_t.T[(layer/2)*self.hidden_size:(layer/2+1)*self.hidden_size]).T)
                
        h_list_recon = [T.zeros_like(self.Xs)]
        for layer, w in enumerate(self.weights_list):
            if layer%2 != 0:
                h_list_recon.append(T.zeros_like(T.dot(h_list_recon[-1], w)))
            else:
                h_list_recon.append((h_t_recon.T[(layer/2)*self.hidden_size:(layer/2+1)*self.hidden_size]).T)
        
        #with noise
        _, _, cost, show_cost, error = GSN.build_gsn_given_hiddens(self.Xs, h_list, self.weights_list, self.bias_list, True, self.noiseless_h1, self.hidden_add_noise_sigma, self.input_salt_and_pepper, self.input_sampling, self.MRG, self.visible_activation, self.hidden_activation, self.walkbacks, self.cost_function)
        #without noise for reconstruction
        x_sample_recon, _, _, recon_show_cost, _ = GSN.build_gsn_given_hiddens(self.Xs, h_list_recon, self.weights_list, self.bias_list, False, self.noiseless_h1, self.hidden_add_noise_sigma, self.input_salt_and_pepper, self.input_sampling, self.MRG, self.visible_activation, self.hidden_activation, self.walkbacks, self.cost_function)
        
        updates_train = updates_recurrent
        updates_cost = updates_recurrent
        
        #############
        #   COSTS   #
        #############
        log.maybeLog(self.logger, '\nCost w.r.t p(X|...) at every step in the graph')
        start_functions_time = time.time()

        # if we are not using Hessian-free training create the normal sgd functions
        if not self.hessian_free:
            gradient      = T.grad(cost, self.params)      
            gradient_buffer = [theano.shared(numpy.zeros(param.get_value().shape, dtype='float32')) for param in self.params]
            
            m_gradient    = [self.momentum * gb + (cast32(1) - self.momentum) * g for (gb, g) in zip(gradient_buffer, gradient)]
            param_updates = [(param, param - self.learning_rate * mg) for (param, mg) in zip(self.params, m_gradient)]
            gradient_buffer_updates = zip(gradient_buffer, m_gradient)
                
            updates = OrderedDict(param_updates + gradient_buffer_updates)
            updates_train.update(updates)
        
            log.maybeLog(self.logger, "rnn-gsn learn...")
            self.f_learn = theano.function(inputs  = [self.Xs],
                                      updates = updates_train,
                                      outputs = [show_cost, error],
                                      on_unused_input='warn',
                                      name='rnngsn_f_learn')
            
            log.maybeLog(self.logger, "rnn-gsn cost...")
            self.f_cost  = theano.function(inputs  = [self.Xs],
                                      updates = updates_cost,
                                      outputs = [show_cost, error],
                                      on_unused_input='warn',
                                      name='rnngsn_f_cost')
        
        log.maybeLog(self.logger, "Training/cost functions done.")
        
        # Denoise some numbers : show number, noisy number, predicted number, reconstructed number
        log.maybeLog(self.logger, "Creating graph for noisy reconstruction function at checkpoints during training.")
        self.f_recon = theano.function(inputs=[self.Xs],
                                       outputs=[x_sample_recon[-1], recon_show_cost],
                                       name='rnngsn_f_recon')
        
        # a function to add salt and pepper noise
        self.f_noise = theano.function(inputs = [self.X],
                                       outputs = salt_and_pepper(self.X, self.input_salt_and_pepper),
                                       name='rnngsn_f_noise')
        # Sampling functions
        log.maybeLog(self.logger, "Creating sampling function...")
        if self.layers == 1: 
            self.f_sample = theano.function(inputs = [X_sample],
                                            outputs = visible_pX_chain[-1],
                                            name='rnngsn_f_sample_single_layer')
        else:
            self.f_sample = theano.function(inputs = self.network_state_input,
                                            outputs = self.network_state_output + visible_pX_chain,
                                            on_unused_input='warn',
                                            name='rnngsn_f_sample')
        
    
        log.maybeLog(self.logger, "Done compiling all functions.")
        compilation_time = time.time() - start_functions_time
        # Show the compile time with appropriate easy-to-read units.
        log.maybeLog(self.logger, "Total compilation time took "+make_time_units_string(compilation_time)+".\n\n")
예제 #2
0
    def __init__(self, train_X=None, train_Y=None, valid_X=None, valid_Y=None, test_X=None, test_Y=None, args=None, logger=None):
        # Output logger
        self.logger = logger
        self.outdir = args.get("output_path", defaults["output_path"])
        if self.outdir[-1] != '/':
            self.outdir = self.outdir+'/'
            
        data.mkdir_p(self.outdir)
        
        # Configuration
        config_filename = self.outdir+'config'
        logger.log('Saving config')
        with open(config_filename, 'w') as f:
            f.write(str(args))
 
        # Input data - make sure it is a list of shared datasets if it isn't. THIS WILL KEEP 'NONE' AS 'NONE' no need to worry :)
        self.train_X = raise_to_list(train_X)
        self.train_Y = raise_to_list(train_Y)
        self.valid_X = raise_to_list(valid_X)
        self.valid_Y = raise_to_list(valid_Y)
        self.test_X  = raise_to_list(test_X)
        self.test_Y  = raise_to_list(test_Y)
                
        # variables from the dataset that are used for initialization and image reconstruction
        if self.train_X is None:
            self.N_input = args.get("input_size")
            if args.get("input_size") is None:
                raise AssertionError("Please either specify input_size in the arguments or provide an example train_X for input dimensionality.")
        else:
            self.N_input = self.train_X[0].get_value(borrow=True).shape[1]
        
        self.is_image = args.get('is_image', defaults['is_image'])
        if self.is_image:
            (_h, _w) = closest_to_square_factors(self.N_input)
            self.image_width  = args.get('width', _w)
            self.image_height = args.get('height', _h)
            
        #######################################
        # Network and training specifications #
        #######################################
        self.layers          = args.get('layers', defaults['layers']) # number hidden layers
        self.walkbacks       = args.get('walkbacks', defaults['walkbacks']) # number of walkbacks
        self.learning_rate   = theano.shared(cast32(args.get('learning_rate', defaults['learning_rate'])))  # learning rate
        self.init_learn_rate = cast32(args.get('learning_rate', defaults['learning_rate']))
        self.momentum        = theano.shared(cast32(args.get('momentum', defaults['momentum']))) # momentum term
        self.annealing       = cast32(args.get('annealing', defaults['annealing'])) # exponential annealing coefficient
        self.noise_annealing = cast32(args.get('noise_annealing', defaults['noise_annealing'])) # exponential noise annealing coefficient
        self.batch_size      = args.get('batch_size', defaults['batch_size'])
        self.gsn_batch_size = args.get('gsn_batch_size', defaults['gsn_batch_size'])
        self.n_epoch         = args.get('n_epoch', defaults['n_epoch'])
        self.early_stop_threshold = args.get('early_stop_threshold', defaults['early_stop_threshold'])
        self.early_stop_length = args.get('early_stop_length', defaults['early_stop_length'])
        self.save_frequency  = args.get('save_frequency', defaults['save_frequency'])
        
        self.noiseless_h1           = args.get('noiseless_h1', defaults["noiseless_h1"])
        self.hidden_add_noise_sigma = theano.shared(cast32(args.get('hidden_add_noise_sigma', defaults["hidden_add_noise_sigma"])))
        self.input_salt_and_pepper  = theano.shared(cast32(args.get('input_salt_and_pepper', defaults["input_salt_and_pepper"])))
        self.input_sampling         = args.get('input_sampling', defaults["input_sampling"])
        self.vis_init               = args.get('vis_init', defaults['vis_init'])
        self.initialize_gsn         = args.get('initialize_gsn', defaults['initialize_gsn'])
        self.hessian_free           = args.get('hessian_free', defaults['hessian_free'])
        
        self.hidden_size = args.get('hidden_size', defaults['hidden_size'])
        self.layer_sizes = [self.N_input] + [self.hidden_size] * self.layers # layer sizes, from h0 to hK (h0 is the visible layer)
        self.recurrent_hidden_size = args.get('recurrent_hidden_size', defaults['recurrent_hidden_size'])
        
        self.f_recon = None
        self.f_noise = None
        
        # Activation functions!
        # For the GSN:
        if args.get('hidden_activation') is not None:
            log.maybeLog(self.logger, 'Using specified activation for GSN hiddens')
            self.hidden_activation = args.get('hidden_activation')
        elif args.get('hidden_act') is not None:
            self.hidden_activation = get_activation_function(args.get('hidden_act'))
            log.maybeLog(self.logger, 'Using {0!s} activation for GSN hiddens'.format(args.get('hidden_act')))
        else:
            log.maybeLog(self.logger, "Using default activation for GSN hiddens")
            self.hidden_activation = defaults['hidden_activation']
            
        # For the RNN:
        if args.get('recurrent_hidden_activation') is not None:
            log.maybeLog(self.logger, 'Using specified activation for RNN hiddens')
            self.recurrent_hidden_activation = args.get('recurrent_hidden_activation')
        elif args.get('recurrent_hidden_act') is not None:
            self.recurrent_hidden_activation = get_activation_function(args.get('recurrent_hidden_act'))
            log.maybeLog(self.logger, 'Using {0!s} activation for RNN hiddens'.format(args.get('recurrent_hidden_act')))
        else:
            log.maybeLog(self.logger, "Using default activation for RNN hiddens")
            self.recurrent_hidden_activation = defaults['recurrent_hidden_activation']
            
        # Visible layer activation
        if args.get('visible_activation') is not None:
            log.maybeLog(self.logger, 'Using specified activation for visible layer')
            self.visible_activation = args.get('visible_activation')
        elif args.get('visible_act') is not None:
            self.visible_activation = get_activation_function(args.get('visible_act'))
            log.maybeLog(self.logger, 'Using {0!s} activation for visible layer'.format(args.get('visible_act')))
        else:
            log.maybeLog(self.logger, 'Using default activation for visible layer')
            self.visible_activation = defaults['visible_activation']
            
        # Cost function!
        if args.get('cost_function') is not None:
            log.maybeLog(self.logger, '\nUsing specified cost function for GSN training\n')
            self.cost_function = args.get('cost_function')
        elif args.get('cost_funct') is not None:
            self.cost_function = get_cost_function(args.get('cost_funct'))
            log.maybeLog(self.logger, 'Using {0!s} for cost function'.format(args.get('cost_funct')))
        else:
            log.maybeLog(self.logger, '\nUsing default cost function for GSN training\n')
            self.cost_function = defaults['cost_function']
        
        ############################
        # Theano variables and RNG #
        ############################
        self.X = T.fmatrix('X') #single (batch) for training gsn
        self.Xs = T.fmatrix('Xs') #sequence for training rnn-gsn
        self.MRG = RNG_MRG.MRG_RandomStreams(1)
        
        ###############
        # Parameters! #
        ###############
        #gsn
        self.weights_list = [get_shared_weights(self.layer_sizes[i], self.layer_sizes[i+1], name="W_{0!s}_{1!s}".format(i,i+1)) for i in range(self.layers)] # initialize each layer to uniform sample from sqrt(6. / (n_in + n_out))
        self.bias_list    = [get_shared_bias(self.layer_sizes[i], name='b_'+str(i)) for i in range(self.layers + 1)] # initialize each layer to 0's.
        
        #recurrent
        self.recurrent_to_gsn_weights_list = [get_shared_weights(self.recurrent_hidden_size, self.layer_sizes[layer], name="W_u_h{0!s}".format(layer)) for layer in range(self.layers+1) if layer%2 != 0]
        self.W_u_u = get_shared_weights(self.recurrent_hidden_size, self.recurrent_hidden_size, name="W_u_u")
        self.W_x_u = get_shared_weights(self.N_input, self.recurrent_hidden_size, name="W_x_u")
        self.recurrent_bias = get_shared_bias(self.recurrent_hidden_size, name='b_u')
        
        #lists for use with gradients
        self.gsn_params = self.weights_list + self.bias_list
        self.u_params   = [self.W_u_u, self.W_x_u, self.recurrent_bias]
        self.params     = self.gsn_params + self.recurrent_to_gsn_weights_list + self.u_params
        
        ###########################################################
        #           load initial parameters of gsn                #
        ###########################################################
        self.train_gsn_first = False
        if self.initialize_gsn:
            params_to_load = 'gsn_params.pkl'
            if not os.path.isfile(params_to_load):
                self.train_gsn_first = True 
            else:
                log.maybeLog(self.logger, "\nLoading existing GSN parameters\n")
                loaded_params = cPickle.load(open(params_to_load,'r'))
                [p.set_value(lp.get_value(borrow=False)) for lp, p in zip(loaded_params[:len(self.weights_list)], self.weights_list)]
                [p.set_value(lp.get_value(borrow=False)) for lp, p in zip(loaded_params[len(self.weights_list):], self.bias_list)]
                
        if self.initialize_gsn:
            self.gsn_args = {'weights_list':       self.weights_list,
                             'bias_list':          self.bias_list,
                             'hidden_activation':  self.hidden_activation,
                             'visible_activation': self.visible_activation,
                             'cost_function':      self.cost_function,
                             'layers':             self.layers,
                             'walkbacks':          self.walkbacks,
                             'hidden_size':        self.hidden_size,
                             'learning_rate':      args.get('learning_rate', defaults['learning_rate']),
                             'momentum':           args.get('momentum', defaults['momentum']),
                             'annealing':          self.annealing,
                             'noise_annealing':    self.noise_annealing,
                             'batch_size':         self.gsn_batch_size,
                             'n_epoch':            self.n_epoch,
                             'early_stop_threshold':   self.early_stop_threshold,
                             'early_stop_length':      self.early_stop_length,
                             'save_frequency':         self.save_frequency,
                             'noiseless_h1':           self.noiseless_h1,
                             'hidden_add_noise_sigma': args.get('hidden_add_noise_sigma', defaults['hidden_add_noise_sigma']),
                             'input_salt_and_pepper':  args.get('input_salt_and_pepper', defaults['input_salt_and_pepper']),
                             'input_sampling':      self.input_sampling,
                             'vis_init':            self.vis_init,
                             'output_path':         self.outdir+'gsn/',
                             'is_image':            self.is_image,
                             'input_size':          self.N_input
                             }
            
        ############
        # Sampling #
        ############
        # the input to the sampling function
        X_sample = T.fmatrix("X_sampling")
        self.network_state_input = [X_sample] + [T.fmatrix("H_sampling_"+str(i+1)) for i in range(self.layers)]
       
        # "Output" state of the network (noisy)
        # initialized with input, then we apply updates
        self.network_state_output = [X_sample] + self.network_state_input[1:]
        visible_pX_chain = []
    
        # ONE update
        _add_noise = True
        log.maybeLog(self.logger, "Performing one walkback in network state sampling.")
        GSN.update_layers(self.network_state_output,
                          self.weights_list,
                          self.bias_list,
                          visible_pX_chain, 
                          _add_noise,
                          self.noiseless_h1,
                          self.hidden_add_noise_sigma,
                          self.input_salt_and_pepper,
                          self.input_sampling,
                          self.MRG,
                          self.visible_activation,
                          self.hidden_activation,
                          self.logger)
    
               
        #############################################
        #      Build the graphs for the RNN-GSN     #
        #############################################
        # If `x_t` is given, deterministic recurrence to compute the u_t. Otherwise, first generate
        def recurrent_step(x_t, u_tm1, add_noise):
            # Make current guess for hiddens based on U
            for i in range(self.layers):
                if i%2 == 0:
                    log.maybeLog(self.logger, "Using {0!s} and {1!s}".format(self.recurrent_to_gsn_weights_list[(i+1)/2],self.bias_list[i+1]))
            h_t = T.concatenate([self.hidden_activation(self.bias_list[i+1] + T.dot(u_tm1, self.recurrent_to_gsn_weights_list[(i+1)/2])) for i in range(self.layers) if i%2 == 0],axis=0)
            
            generate = x_t is None
            if generate:
                pass
            
            # Make a GSN to update U
    #         chain, hs = gsn.build_gsn(x_t, weights_list, bias_list, add_noise, state.noiseless_h1, state.hidden_add_noise_sigma, state.input_salt_and_pepper, state.input_sampling, MRG, visible_activation, hidden_activation, walkbacks, logger)
    #         htop_t = hs[-1]
    #         denoised_x_t = chain[-1]
            # Update U
    #         ua_t = T.dot(denoised_x_t, W_x_u) + T.dot(htop_t, W_h_u) + T.dot(u_tm1, W_u_u) + recurrent_bias
            ua_t = T.dot(x_t, self.W_x_u) + T.dot(u_tm1, self.W_u_u) + self.recurrent_bias
            u_t = self.recurrent_hidden_activation(ua_t)
            return None if generate else [ua_t, u_t, h_t]
        
        log.maybeLog(self.logger, "\nCreating recurrent step scan.")
        # For training, the deterministic recurrence is used to compute all the
        # {h_t, 1 <= t <= T} given Xs. Conditional GSNs can then be trained
        # in batches using those parameters.
        u0 = T.zeros((self.recurrent_hidden_size,))  # initial value for the RNN hidden units
        (ua, u, h_t), updates_recurrent = theano.scan(fn=lambda x_t, u_tm1, *_: recurrent_step(x_t, u_tm1, True),
                                                           sequences=self.Xs,
                                                           outputs_info=[None, u0, None],
                                                           non_sequences=self.params)
        
        log.maybeLog(self.logger, "Now for reconstruction sample without noise")
        (_, _, h_t_recon), updates_recurrent_recon = theano.scan(fn=lambda x_t, u_tm1, *_: recurrent_step(x_t, u_tm1, False),
                                                           sequences=self.Xs,
                                                           outputs_info=[None, u0, None],
                                                           non_sequences=self.params)
        # put together the hiddens list
        h_list = [T.zeros_like(self.Xs)]
        for layer, w in enumerate(self.weights_list):
            if layer%2 != 0:
                h_list.append(T.zeros_like(T.dot(h_list[-1], w)))
            else:
                h_list.append((h_t.T[(layer/2)*self.hidden_size:(layer/2+1)*self.hidden_size]).T)
                
        h_list_recon = [T.zeros_like(self.Xs)]
        for layer, w in enumerate(self.weights_list):
            if layer%2 != 0:
                h_list_recon.append(T.zeros_like(T.dot(h_list_recon[-1], w)))
            else:
                h_list_recon.append((h_t_recon.T[(layer/2)*self.hidden_size:(layer/2+1)*self.hidden_size]).T)
        
        #with noise
        _, _, cost, show_cost, error = GSN.build_gsn_given_hiddens(self.Xs, h_list, self.weights_list, self.bias_list, True, self.noiseless_h1, self.hidden_add_noise_sigma, self.input_salt_and_pepper, self.input_sampling, self.MRG, self.visible_activation, self.hidden_activation, self.walkbacks, self.cost_function)
        #without noise for reconstruction
        x_sample_recon, _, _, recon_show_cost, _ = GSN.build_gsn_given_hiddens(self.Xs, h_list_recon, self.weights_list, self.bias_list, False, self.noiseless_h1, self.hidden_add_noise_sigma, self.input_salt_and_pepper, self.input_sampling, self.MRG, self.visible_activation, self.hidden_activation, self.walkbacks, self.cost_function)
        
        updates_train = updates_recurrent
        updates_cost = updates_recurrent
        
        #############
        #   COSTS   #
        #############
        log.maybeLog(self.logger, '\nCost w.r.t p(X|...) at every step in the graph')
        start_functions_time = time.time()

        # if we are not using Hessian-free training create the normal sgd functions
        if not self.hessian_free:
            gradient      = T.grad(cost, self.params)      
            gradient_buffer = [theano.shared(numpy.zeros(param.get_value().shape, dtype='float32')) for param in self.params]
            
            m_gradient    = [self.momentum * gb + (cast32(1) - self.momentum) * g for (gb, g) in zip(gradient_buffer, gradient)]
            param_updates = [(param, param - self.learning_rate * mg) for (param, mg) in zip(self.params, m_gradient)]
            gradient_buffer_updates = zip(gradient_buffer, m_gradient)
                
            updates = OrderedDict(param_updates + gradient_buffer_updates)
            updates_train.update(updates)
        
            log.maybeLog(self.logger, "rnn-gsn learn...")
            self.f_learn = theano.function(inputs  = [self.Xs],
                                      updates = updates_train,
                                      outputs = [show_cost, error],
                                      on_unused_input='warn',
                                      name='rnngsn_f_learn')
            
            log.maybeLog(self.logger, "rnn-gsn cost...")
            self.f_cost  = theano.function(inputs  = [self.Xs],
                                      updates = updates_cost,
                                      outputs = [show_cost, error],
                                      on_unused_input='warn',
                                      name='rnngsn_f_cost')
        
        log.maybeLog(self.logger, "Training/cost functions done.")
        
        # Denoise some numbers : show number, noisy number, predicted number, reconstructed number
        log.maybeLog(self.logger, "Creating graph for noisy reconstruction function at checkpoints during training.")
        self.f_recon = theano.function(inputs=[self.Xs],
                                       outputs=[x_sample_recon[-1], recon_show_cost],
                                       name='rnngsn_f_recon')
        
        # a function to add salt and pepper noise
        self.f_noise = theano.function(inputs = [self.X],
                                       outputs = salt_and_pepper(self.X, self.input_salt_and_pepper),
                                       name='rnngsn_f_noise')
        # Sampling functions
        log.maybeLog(self.logger, "Creating sampling function...")
        if self.layers == 1: 
            self.f_sample = theano.function(inputs = [X_sample],
                                            outputs = visible_pX_chain[-1],
                                            name='rnngsn_f_sample_single_layer')
        else:
            self.f_sample = theano.function(inputs = self.network_state_input,
                                            outputs = self.network_state_output + visible_pX_chain,
                                            on_unused_input='warn',
                                            name='rnngsn_f_sample')
        
    
        log.maybeLog(self.logger, "Done compiling all functions.")
        compilation_time = time.time() - start_functions_time
        # Show the compile time with appropriate easy-to-read units.
        log.maybeLog(self.logger, "Total compilation time took "+make_time_units_string(compilation_time)+".\n\n")
예제 #3
0
 def plot_samples(self, epoch_number="", leading_text="", n_samples=400):
     to_sample = time.time()
     initial = self.test_X.get_value(borrow=True)[:1]
     rand_idx = numpy.random.choice(range(self.test_X.get_value(borrow=True).shape[0]))
     rand_init = self.test_X.get_value(borrow=True)[rand_idx:rand_idx+1]
     
     V, _ = self.sample(initial, n_samples)
     rand_V, _ = self.sample(rand_init, n_samples)
     
     img_samples = PIL.Image.fromarray(tile_raster_images(V, (self.image_height, self.image_width), closest_to_square_factors(n_samples)))
     rand_img_samples = PIL.Image.fromarray(tile_raster_images(rand_V, (self.image_height, self.image_width), closest_to_square_factors(n_samples)))
     
     fname = self.outdir+leading_text+'samples_epoch_'+str(epoch_number)+'.png'
     img_samples.save(fname)
     rfname = self.outdir+leading_text+'samples_rand_epoch_'+str(epoch_number)+'.png'
     rand_img_samples.save(rfname) 
     log.maybeLog(self.logger, 'Took ' + make_time_units_string(time.time() - to_sample) + ' to sample '+str(n_samples*2)+' numbers')
예제 #4
0
 def plot_samples(self, epoch_number="", leading_text="", n_samples=400):
     to_sample = time.time()
     initial = self.test_X.get_value(borrow=True)[:1]
     rand_idx = numpy.random.choice(range(self.test_X.get_value(borrow=True).shape[0]))
     rand_init = self.test_X.get_value(borrow=True)[rand_idx:rand_idx+1]
     
     V, _ = self.sample(initial, n_samples)
     rand_V, _ = self.sample(rand_init, n_samples)
     
     img_samples = PIL.Image.fromarray(tile_raster_images(V, (self.image_height, self.image_width), closest_to_square_factors(n_samples)))
     rand_img_samples = PIL.Image.fromarray(tile_raster_images(rand_V, (self.image_height, self.image_width), closest_to_square_factors(n_samples)))
     
     fname = self.outdir+leading_text+'samples_epoch_'+str(epoch_number)+'.png'
     img_samples.save(fname)
     rfname = self.outdir+leading_text+'samples_rand_epoch_'+str(epoch_number)+'.png'
     rand_img_samples.save(rfname) 
     log.maybeLog(self.logger, 'Took ' + make_time_units_string(time.time() - to_sample) + ' to sample '+str(n_samples*2)+' numbers')