def demo_single_image(): # Create model model_tf = vnect_model.VNect(args.input_size) # Create session sess_config = tf.ConfigProto(device_count=gpu_count) sess = tf.Session(config=sess_config) # Restore weights saver = tf.train.Saver() saver.restore(sess, args.model_file) # Joints placeholder joints_2d = np.zeros(shape=(args.num_of_joints, 2), dtype=np.int32) joints_3d = np.zeros(shape=(args.num_of_joints, 3), dtype=np.float32) img_path = args.test_img t1 = time.time() input_batch = [] cam_img = utils.read_square_image(img_path, '', args.input_size, 'IMAGE') orig_size_input = cam_img.astype(np.float32) # Create multi-scale inputs for scale in scales: resized_img = utils.resize_pad_img(orig_size_input, scale, args.input_size) input_batch.append(resized_img) input_batch = np.asarray(input_batch, dtype=np.float32) input_batch /= 255.0 input_batch -= 0.4 # Inference [hm, x_hm, y_hm, z_hm] = sess.run([ model_tf.heapmap, model_tf.x_heatmap, model_tf.y_heatmap, model_tf.z_heatmap ], feed_dict={model_tf.input_holder: input_batch}) # Average scale outputs hm_size = args.input_size // args.pool_scale hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints)) x_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints)) y_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints)) z_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints)) for i in range(len(scales)): rescale = 1.0 / scales[i] scaled_hm = cv2.resize(hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR) scaled_x_hm = cv2.resize(x_hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR) scaled_y_hm = cv2.resize(y_hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR) scaled_z_hm = cv2.resize(z_hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR) mid = [scaled_hm.shape[0] // 2, scaled_hm.shape[1] // 2] hm_avg += scaled_hm[mid[0] - hm_size // 2:mid[0] + hm_size // 2, mid[1] - hm_size // 2:mid[1] + hm_size // 2, :] x_hm_avg += scaled_x_hm[mid[0] - hm_size // 2:mid[0] + hm_size // 2, mid[1] - hm_size // 2:mid[1] + hm_size // 2, :] y_hm_avg += scaled_y_hm[mid[0] - hm_size // 2:mid[0] + hm_size // 2, mid[1] - hm_size // 2:mid[1] + hm_size // 2, :] z_hm_avg += scaled_z_hm[mid[0] - hm_size // 2:mid[0] + hm_size // 2, mid[1] - hm_size // 2:mid[1] + hm_size // 2, :] hm_avg /= len(scales) x_hm_avg /= len(scales) y_hm_avg /= len(scales) z_hm_avg /= len(scales) # Get 2d joints utils.extract_2d_joint_from_heatmap(hm_avg, args.input_size, joints_2d) # Get 3d joints utils.extract_3d_joints_from_heatmap(joints_2d, x_hm_avg, y_hm_avg, z_hm_avg, args.input_size, joints_3d) if args.plot_2d: # Plot 2d joint location joint_map = np.zeros(shape=(args.input_size, args.input_size, 3)) for joint_num in range(joints_2d.shape[0]): cv2.circle(joint_map, center=(joints_2d[joint_num][1], joints_2d[joint_num][0]), radius=3, color=(255, 0, 0), thickness=-1) # Draw 2d limbs utils.draw_limbs_2d(cam_img, joints_2d, limb_parents) print('FPS: {:>2.2f}'.format(1 / (time.time() - t1))) if args.plot_3d: # Draw 3d limbs glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) utils.draw_limbs_3d_gl(joints_3d, limb_parents) pygame.display.flip() pygame.time.wait(1) if args.plot_2d: # Display 2d results concat_img = np.concatenate((cam_img, joint_map), axis=1) cv2.imshow('2D', concat_img.astype(np.uint8)) cv2.waitKey(0)
def get_vnect_joints(frame): t1 = time.time() input_batch = [] #cam_img = utils.read_square_image('', cam, args.input_size, 'WEBCAM') #_, frame = cam.read() cam_img = utils.read_square_webcam(frame, args.input_size, 'WEBCAM') orig_size_input = cam_img.astype(np.float32) # Create multi-scale inputs for scale in scales: resized_img = utils.resize_pad_img(orig_size_input, scale, args.input_size) input_batch.append(resized_img) input_batch = np.asarray(input_batch, dtype=np.float32) input_batch /= 255.0 input_batch -= 0.4 # Inference [hm, x_hm, y_hm, z_hm] = sess.run([ model_tf.heapmap, model_tf.x_heatmap, model_tf.y_heatmap, model_tf.z_heatmap ], feed_dict={model_tf.input_holder: input_batch}) # Average scale outputs hm_size = args.input_size // args.pool_scale hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints)) x_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints)) y_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints)) z_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints)) for i in range(len(scales)): rescale = 1.0 / scales[i] scaled_hm = cv2.resize(hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR) scaled_x_hm = cv2.resize(x_hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR) scaled_y_hm = cv2.resize(y_hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR) scaled_z_hm = cv2.resize(z_hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR) mid = [scaled_hm.shape[0] // 2, scaled_hm.shape[1] // 2] hm_avg += scaled_hm[mid[0] - hm_size // 2:mid[0] + hm_size // 2, mid[1] - hm_size // 2:mid[1] + hm_size // 2, :] x_hm_avg += scaled_x_hm[mid[0] - hm_size // 2:mid[0] + hm_size // 2, mid[1] - hm_size // 2:mid[1] + hm_size // 2, :] y_hm_avg += scaled_y_hm[mid[0] - hm_size // 2:mid[0] + hm_size // 2, mid[1] - hm_size // 2:mid[1] + hm_size // 2, :] z_hm_avg += scaled_z_hm[mid[0] - hm_size // 2:mid[0] + hm_size // 2, mid[1] - hm_size // 2:mid[1] + hm_size // 2, :] hm_avg /= len(scales) x_hm_avg /= len(scales) y_hm_avg /= len(scales) z_hm_avg /= len(scales) # Get 2d joints utils.extract_2d_joint_from_heatmap(hm_avg, args.input_size, joints_2d) # Get 3d joints utils.extract_3d_joints_from_heatmap(joints_2d, x_hm_avg, y_hm_avg, z_hm_avg, args.input_size, joints_3d) # Plot 2d joint location joint_map = np.zeros(shape=(args.input_size, args.input_size, 3)) for joint_num in range(joints_2d.shape[0]): cv2.circle(joint_map, center=(joints_2d[joint_num][1], joints_2d[joint_num][0]), radius=3, color=(255, 0, 0), thickness=-1) # Draw 2d limbs utils.draw_limbs_2d(cam_img, joints_2d, limb_parents) print('FPS: {:>2.2f}'.format(1 / (time.time() - t1))) # Display 2d results concat_img = np.concatenate((cam_img, joint_map), axis=1) return concat_img, joints_3d
def demo_single_image(): # Create model model_tf = vnect_model.VNect(args.input_size) # Create session sess_config = tf.ConfigProto(device_count=gpu_count) sess = tf.Session(config=sess_config) # Restore weights saver = tf.train.Saver() saver.restore(sess, args.model_file) # Joints placeholder joints_2d = np.zeros(shape=(args.num_of_joints, 2), dtype=np.int32) joints_3d = np.zeros(shape=(args.num_of_joints, 3), dtype=np.float32) img_path = args.test_img t1 = time.time() input_batch = [] cam_img = utils.read_square_image(img_path, '', args.input_size, 'IMAGE') orig_size_input = cam_img.astype(np.float32) # Create multi-scale inputs for scale in scales: resized_img = utils.resize_pad_img(orig_size_input, scale, args.input_size) input_batch.append(resized_img) input_batch = np.asarray(input_batch, dtype=np.float32) input_batch /= 255.0 input_batch -= 0.4 # Inference [hm, x_hm, y_hm, z_hm] = sess.run( [model_tf.heapmap, model_tf.x_heatmap, model_tf.y_heatmap, model_tf.z_heatmap], feed_dict={model_tf.input_holder: input_batch}) # Average scale outputs hm_size = args.input_size // args.pool_scale hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints)) x_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints)) y_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints)) z_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints)) for i in range(len(scales)): rescale = 1.0 / scales[i] scaled_hm = cv2.resize(hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR) scaled_x_hm = cv2.resize(x_hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR) scaled_y_hm = cv2.resize(y_hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR) scaled_z_hm = cv2.resize(z_hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR) mid = [scaled_hm.shape[0] // 2, scaled_hm.shape[1] // 2] hm_avg += scaled_hm[mid[0] - hm_size // 2: mid[0] + hm_size // 2, mid[1] - hm_size // 2: mid[1] + hm_size // 2, :] x_hm_avg += scaled_x_hm[mid[0] - hm_size // 2: mid[0] + hm_size // 2, mid[1] - hm_size // 2: mid[1] + hm_size // 2, :] y_hm_avg += scaled_y_hm[mid[0] - hm_size // 2: mid[0] + hm_size // 2, mid[1] - hm_size // 2: mid[1] + hm_size // 2, :] z_hm_avg += scaled_z_hm[mid[0] - hm_size // 2: mid[0] + hm_size // 2, mid[1] - hm_size // 2: mid[1] + hm_size // 2, :] hm_avg /= len(scales) x_hm_avg /= len(scales) y_hm_avg /= len(scales) z_hm_avg /= len(scales) # Get 2d joints utils.extract_2d_joint_from_heatmap(hm_avg, args.input_size, joints_2d) # Get 3d joints utils.extract_3d_joints_from_heatmap(joints_2d, x_hm_avg, y_hm_avg, z_hm_avg, args.input_size, joints_3d) if args.plot_2d: # Plot 2d joint location joint_map = np.zeros(shape=(args.input_size, args.input_size, 3)) for joint_num in range(joints_2d.shape[0]): cv2.circle(joint_map, center=(joints_2d[joint_num][1], joints_2d[joint_num][0]), radius=3, color=(255, 0, 0), thickness=-1) # Draw 2d limbs utils.draw_limbs_2d(cam_img, joints_2d, limb_parents) print('FPS: {:>2.2f}'.format(1 / (time.time() - t1))) if args.plot_3d: # Draw 3d limbs glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) utils.draw_limbs_3d_gl(joints_3d, limb_parents) pygame.display.flip() pygame.time.wait(1) if args.plot_2d: # Display 2d results concat_img = np.concatenate((cam_img, joint_map), axis=1) cv2.imshow('2D', concat_img.astype(np.uint8)) cv2.waitKey(0)
def demo_single_image(): if args.plot_3d: plt.ion() fig = plt.figure() # fig.set_size_inches( 12,12 ) # ax = fig.add_subplot(121, projection='3d') # ax2 = fig.add_subplot(122) plt.show() # Create model model_tf = vnect_model.VNect(args.input_size) # Create session sess_config = tf.ConfigProto(device_count=gpu_count) sess = tf.Session(config=sess_config) # Restore weights saver = tf.train.Saver() saver.restore(sess, args.model_file) # Joints placeholder joints_2d = np.zeros(shape=(args.num_of_joints, 2), dtype=np.int32) joints_3d = np.zeros(shape=(args.num_of_joints, 3), dtype=np.float32) img_path = args.test_img t1 = time.time() input_batch = [] cam_img = utils.read_square_image(img_path, '', args.input_size, 'IMAGE') orig_size_input = cam_img.astype(np.float32) # Create multi-scale inputs for scale in scales: resized_img = utils.resize_pad_img(orig_size_input, scale, args.input_size) input_batch.append(resized_img) input_batch = np.asarray(input_batch, dtype=np.float32) input_batch /= 255.0 input_batch -= 0.4 # Inference [hm, x_hm, y_hm, z_hm] = sess.run([ model_tf.heapmap, model_tf.x_heatmap, model_tf.y_heatmap, model_tf.z_heatmap ], feed_dict={model_tf.input_holder: input_batch}) # Average scale outputs hm_size = args.input_size // args.pool_scale hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints)) x_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints)) y_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints)) z_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints)) for i in range(len(scales)): rescale = 1.0 / scales[i] scaled_hm = cv2.resize(hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR) scaled_x_hm = cv2.resize(x_hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR) scaled_y_hm = cv2.resize(y_hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR) scaled_z_hm = cv2.resize(z_hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR) mid = [scaled_hm.shape[0] // 2, scaled_hm.shape[1] // 2] hm_avg += scaled_hm[mid[0] - hm_size // 2:mid[0] + hm_size // 2, mid[1] - hm_size // 2:mid[1] + hm_size // 2, :] x_hm_avg += scaled_x_hm[mid[0] - hm_size // 2:mid[0] + hm_size // 2, mid[1] - hm_size // 2:mid[1] + hm_size // 2, :] y_hm_avg += scaled_y_hm[mid[0] - hm_size // 2:mid[0] + hm_size // 2, mid[1] - hm_size // 2:mid[1] + hm_size // 2, :] z_hm_avg += scaled_z_hm[mid[0] - hm_size // 2:mid[0] + hm_size // 2, mid[1] - hm_size // 2:mid[1] + hm_size // 2, :] hm_avg /= len(scales) x_hm_avg /= len(scales) y_hm_avg /= len(scales) z_hm_avg /= len(scales) # Get 2d joints utils.extract_2d_joint_from_heatmap(hm_avg, args.input_size, joints_2d) # Get 3d joints utils.extract_3d_joints_from_heatmap(joints_2d, x_hm_avg, y_hm_avg, z_hm_avg, args.input_size, joints_3d) if args.plot_2d: # Plot 2d joint location joint_map = np.zeros(shape=(args.input_size, args.input_size, 3)) for joint_num in range(joints_2d.shape[0]): cv2.circle(joint_map, center=(joints_2d[joint_num][1], joints_2d[joint_num][0]), radius=3, color=(255, 0, 0), thickness=-1) # Draw 2d limbs utils.draw_limbs_2d(cam_img, joints_2d, limb_parents) print('FPS: {:>2.2f}'.format(1 / (time.time() - t1))) if args.plot_3d: # ax.clear() # ax.view_init(azim=0, elev=90) # ax.set_xlim(-50, 50) # ax.set_ylim(-50, 50) # ax.set_zlim(-50, 50) # ax.set_xlabel('x') # ax.set_ylabel('y') # ax.set_zlabel('z') # utils.draw_limbs_3d(joints_3d, limb_parents, ax) if args.plot_2d: # Display 2d results concat_img = np.concatenate((cam_img[:, :, ::-1], joint_map), axis=1) plt.imshow(concat_img.astype(np.uint8)) plt.pause(0.00000000100000) plt.show(block=False) elif args.plot_2d: concat_img = np.concatenate((cam_img, joint_map), axis=1) cv2.imshow('2D img', concat_img.astype(np.uint8)) cv2.waitKey(1) while True: time.sleep(2) OSC_server.send('/joints', joints_2d, hm)
def demo_webcam(): if args.plot_3d: plt.ion() fig = plt.figure() ax = fig.add_subplot(121, projection='3d') ax2 = fig.add_subplot(122) plt.show() # Create model model_tf = vnect_model.VNect(args.input_size) # Create session sess_config = tf.ConfigProto(device_count=gpu_count) sess = tf.Session(config=sess_config) # Restore weights saver = tf.train.Saver() saver.restore(sess, args.model_file) # Joints placeholder joints_2d = np.zeros(shape=(args.num_of_joints, 2), dtype=np.int32) joints_3d = np.zeros(shape=(args.num_of_joints, 3), dtype=np.float32) cam = cv2.VideoCapture(0) while True: t1 = time.time() input_batch = [] cam_img = utils.read_square_image('', cam, args.input_size, 'WEBCAM') orig_size_input = cam_img.astype(np.float32) # Create multi-scale inputs for scale in scales: resized_img = utils.resize_pad_img(orig_size_input, scale, args.input_size) input_batch.append(resized_img) input_batch = np.asarray(input_batch, dtype=np.float32) input_batch /= 255.0 input_batch -= 0.4 # Inference [hm, x_hm, y_hm, z_hm] = sess.run( [model_tf.heapmap, model_tf.x_heatmap, model_tf.y_heatmap, model_tf.z_heatmap], feed_dict={model_tf.input_holder: input_batch}) # Average scale outputs hm_size = args.input_size // args.pool_scale hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints)) x_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints)) y_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints)) z_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints)) for i in range(len(scales)): rescale = 1.0 / scales[i] scaled_hm = cv2.resize(hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR) scaled_x_hm = cv2.resize(x_hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR) scaled_y_hm = cv2.resize(y_hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR) scaled_z_hm = cv2.resize(z_hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR) mid = [scaled_hm.shape[0] // 2, scaled_hm.shape[1] // 2] hm_avg += scaled_hm[mid[0] - hm_size // 2: mid[0] + hm_size // 2, mid[1] - hm_size // 2: mid[1] + hm_size // 2, :] x_hm_avg += scaled_x_hm[mid[0] - hm_size // 2: mid[0] + hm_size // 2, mid[1] - hm_size // 2: mid[1] + hm_size // 2, :] y_hm_avg += scaled_y_hm[mid[0] - hm_size // 2: mid[0] + hm_size // 2, mid[1] - hm_size // 2: mid[1] + hm_size // 2, :] z_hm_avg += scaled_z_hm[mid[0] - hm_size // 2: mid[0] + hm_size // 2, mid[1] - hm_size // 2: mid[1] + hm_size // 2, :] hm_avg /= len(scales) x_hm_avg /= len(scales) y_hm_avg /= len(scales) z_hm_avg /= len(scales) # Get 2d joints utils.extract_2d_joint_from_heatmap(hm_avg, args.input_size, joints_2d) # Get 3d joints utils.extract_3d_joints_from_heatmap(joints_2d, x_hm_avg, y_hm_avg, z_hm_avg, args.input_size, joints_3d) if args.plot_2d: # Plot 2d joint location joint_map = np.zeros(shape=(args.input_size, args.input_size, 3)) for joint_num in range(joints_2d.shape[0]): cv2.circle(joint_map, center=(joints_2d[joint_num][1], joints_2d[joint_num][0]), radius=3, color=(255, 0, 0), thickness=-1) # Draw 2d limbs utils.draw_limbs_2d(cam_img, joints_2d, limb_parents) if args.plot_3d: ax.clear() ax.view_init(azim=0, elev=90) ax.set_xlim(-50, 50) ax.set_ylim(-50, 50) ax.set_zlim(-50, 50) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') utils.draw_limbs_3d(joints_3d, limb_parents, ax) if args.plot_2d: # Display 2d results concat_img = np.concatenate((cam_img[:, :, ::-1], joint_map), axis=1) ax2.imshow(concat_img.astype(np.uint8)) plt.pause(0.00001) plt.show(block=False) elif args.plot_2d: concat_img = np.concatenate((cam_img, joint_map), axis=1) cv2.imshow('2D img', concat_img.astype(np.uint8)) if cv2.waitKey(1) == ord('q'): break print('FPS: {:>2.2f}'.format(1 / (time.time() - t1)))