def main(_): tf.logging.set_verbosity(tf.logging.INFO) if FLAGS.horovod: hvd.init() if FLAGS.use_fp16: os.environ["TF_ENABLE_AUTO_MIXED_PRECISION_GRAPH_REWRITE"] = "1" processors = { "cola": ColaProcessor, "mnli": MnliProcessor, "mrpc": MrpcProcessor, "xnli": XnliProcessor, } if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict: raise ValueError( "At least one of `do_train`, `do_eval` or `do_predict' must be True." ) bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) if FLAGS.max_seq_length > bert_config.max_position_embeddings: raise ValueError( "Cannot use sequence length %d because the BERT model " "was only trained up to sequence length %d" % (FLAGS.max_seq_length, bert_config.max_position_embeddings)) tf.gfile.MakeDirs(FLAGS.output_dir) task_name = FLAGS.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) processor = processors[task_name]() label_list = processor.get_labels() tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) master_process = True training_hooks = [] global_batch_size = FLAGS.train_batch_size * FLAGS.num_accumulation_steps hvd_rank = 0 config = tf.ConfigProto() if FLAGS.horovod: tf.logging.info("Multi-GPU training with TF Horovod") tf.logging.info("hvd.size() = %d hvd.rank() = %d", hvd.size(), hvd.rank()) global_batch_size = FLAGS.train_batch_size * FLAGS.num_accumulation_steps * hvd.size( ) master_process = (hvd.rank() == 0) hvd_rank = hvd.rank() config.gpu_options.allow_growth = True config.gpu_options.visible_device_list = str(hvd.local_rank()) if hvd.size() > 1: training_hooks.append(hvd.BroadcastGlobalVariablesHook(0)) if FLAGS.use_xla: config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1 run_config = tf.estimator.RunConfig( model_dir=FLAGS.output_dir if master_process else None, session_config=config, save_checkpoints_steps=FLAGS.save_checkpoints_steps if master_process else None, keep_checkpoint_max=1) if master_process: tf.logging.info("***** Configuaration *****") for key in FLAGS.__flags.keys(): tf.logging.info(' {}: {}'.format(key, getattr(FLAGS, key))) tf.logging.info("**************************") train_examples = None num_train_steps = None num_warmup_steps = None training_hooks.append(LogTrainRunHook(global_batch_size, hvd_rank)) if FLAGS.do_train: train_examples = processor.get_train_examples(FLAGS.data_dir) num_train_steps = int( len(train_examples) / global_batch_size * FLAGS.num_train_epochs) num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion) start_index = 0 end_index = len(train_examples) tmp_filenames = [os.path.join(FLAGS.output_dir, "train.tf_record")] if FLAGS.horovod: tmp_filenames = [ os.path.join(FLAGS.output_dir, "train.tf_record{}".format(i)) for i in range(hvd.size()) ] num_examples_per_rank = len(train_examples) // hvd.size() remainder = len(train_examples) % hvd.size() if hvd.rank() < remainder: start_index = hvd.rank() * (num_examples_per_rank + 1) end_index = start_index + num_examples_per_rank + 1 else: start_index = hvd.rank() * num_examples_per_rank + remainder end_index = start_index + (num_examples_per_rank) model_fn = model_fn_builder(task_name=task_name, bert_config=bert_config, num_labels=len(label_list), init_checkpoint=FLAGS.init_checkpoint, learning_rate=FLAGS.learning_rate if not FLAGS.horovod else FLAGS.learning_rate * hvd.size(), num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, use_one_hot_embeddings=False, hvd=None if not FLAGS.horovod else hvd) estimator = tf.estimator.Estimator(model_fn=model_fn, config=run_config) if FLAGS.do_train: file_based_convert_examples_to_features( train_examples[start_index:end_index], label_list, FLAGS.max_seq_length, tokenizer, tmp_filenames[hvd_rank]) tf.logging.info("***** Running training *****") tf.logging.info(" Num examples = %d", len(train_examples)) tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.logging.info(" Num steps = %d", num_train_steps) train_input_fn = file_based_input_fn_builder( input_file=tmp_filenames, batch_size=FLAGS.train_batch_size, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True, hvd=None if not FLAGS.horovod else hvd) train_start_time = time.time() estimator.train(input_fn=train_input_fn, max_steps=num_train_steps, hooks=training_hooks) train_time_elapsed = time.time() - train_start_time train_time_wo_overhead = training_hooks[-1].total_time avg_sentences_per_second = num_train_steps * global_batch_size * 1.0 / train_time_elapsed ss_sentences_per_second = ( num_train_steps - training_hooks[-1].skipped ) * global_batch_size * 1.0 / train_time_wo_overhead if master_process: tf.logging.info("-----------------------------") tf.logging.info("Total Training Time = %0.2f for Sentences = %d", train_time_elapsed, num_train_steps * global_batch_size) tf.logging.info( "Total Training Time W/O Overhead = %0.2f for Sentences = %d", train_time_wo_overhead, (num_train_steps - training_hooks[-1].skipped) * global_batch_size) tf.logging.info( "Throughput Average (sentences/sec) with overhead = %0.2f", avg_sentences_per_second) tf.logging.info("Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second) tf.logging.info("-----------------------------") if FLAGS.do_eval and master_process: eval_examples = processor.get_dev_examples(FLAGS.data_dir) eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record") file_based_convert_examples_to_features(eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file) tf.logging.info("***** Running evaluation *****") tf.logging.info(" Num examples = %d", len(eval_examples)) tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size) eval_drop_remainder = False eval_input_fn = file_based_input_fn_builder( input_file=eval_file, batch_size=FLAGS.eval_batch_size, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=eval_drop_remainder) eval_hooks = [LogEvalRunHook(FLAGS.eval_batch_size)] eval_start_time = time.time() result = estimator.evaluate(input_fn=eval_input_fn, hooks=eval_hooks) eval_time_elapsed = time.time() - eval_start_time eval_time_wo_overhead = eval_hooks[-1].total_time time_list = eval_hooks[-1].time_list time_list.sort() num_sentences = (eval_hooks[-1].count - eval_hooks[-1].skipped) * FLAGS.eval_batch_size avg = np.mean(time_list) cf_50 = max(time_list[:int(len(time_list) * 0.50)]) cf_90 = max(time_list[:int(len(time_list) * 0.90)]) cf_95 = max(time_list[:int(len(time_list) * 0.95)]) cf_99 = max(time_list[:int(len(time_list) * 0.99)]) cf_100 = max(time_list[:int(len(time_list) * 1)]) ss_sentences_per_second = num_sentences * 1.0 / eval_time_wo_overhead tf.logging.info("-----------------------------") tf.logging.info("Total Inference Time = %0.2f for Sentences = %d", eval_time_elapsed, eval_hooks[-1].count * FLAGS.eval_batch_size) tf.logging.info( "Total Inference Time W/O Overhead = %0.2f for Sentences = %d", eval_time_wo_overhead, (eval_hooks[-1].count - eval_hooks[-1].skipped) * FLAGS.eval_batch_size) tf.logging.info("Summary Inference Statistics on EVAL set") tf.logging.info("Batch size = %d", FLAGS.eval_batch_size) tf.logging.info("Sequence Length = %d", FLAGS.max_seq_length) tf.logging.info("Precision = %s", "fp16" if FLAGS.use_fp16 else "fp32") tf.logging.info("Latency Confidence Level 50 (ms) = %0.2f", cf_50 * 1000) tf.logging.info("Latency Confidence Level 90 (ms) = %0.2f", cf_90 * 1000) tf.logging.info("Latency Confidence Level 95 (ms) = %0.2f", cf_95 * 1000) tf.logging.info("Latency Confidence Level 99 (ms) = %0.2f", cf_99 * 1000) tf.logging.info("Latency Confidence Level 100 (ms) = %0.2f", cf_100 * 1000) tf.logging.info("Latency Average (ms) = %0.2f", avg * 1000) tf.logging.info("Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second) tf.logging.info("-----------------------------") output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt") with tf.gfile.GFile(output_eval_file, "w") as writer: tf.logging.info("***** Eval results *****") for key in sorted(result.keys()): tf.logging.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) if FLAGS.do_predict and master_process: predict_examples = processor.get_test_examples(FLAGS.data_dir) predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record") file_based_convert_examples_to_features(predict_examples, label_list, FLAGS.max_seq_length, tokenizer, predict_file) tf.logging.info("***** Running prediction*****") tf.logging.info(" Num examples = %d", len(predict_examples)) tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size) predict_drop_remainder = False predict_input_fn = file_based_input_fn_builder( input_file=predict_file, batch_size=FLAGS.predict_batch_size, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=predict_drop_remainder) predict_hooks = [LogEvalRunHook(FLAGS.predict_batch_size)] predict_start_time = time.time() output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv") with tf.gfile.GFile(output_predict_file, "w") as writer: tf.logging.info("***** Predict results *****") for prediction in estimator.predict(input_fn=predict_input_fn, hooks=predict_hooks, yield_single_examples=False): output_line = "\t".join( str(class_probability) for class_probability in prediction) + "\n" writer.write(output_line) predict_time_elapsed = time.time() - predict_start_time predict_time_wo_overhead = predict_hooks[-1].total_time time_list = predict_hooks[-1].time_list time_list.sort() num_sentences = (predict_hooks[-1].count - predict_hooks[-1].skipped) * FLAGS.predict_batch_size avg = np.mean(time_list) cf_50 = max(time_list[:int(len(time_list) * 0.50)]) cf_90 = max(time_list[:int(len(time_list) * 0.90)]) cf_95 = max(time_list[:int(len(time_list) * 0.95)]) cf_99 = max(time_list[:int(len(time_list) * 0.99)]) cf_100 = max(time_list[:int(len(time_list) * 1)]) ss_sentences_per_second = num_sentences * 1.0 / predict_time_wo_overhead tf.logging.info("-----------------------------") tf.logging.info("Total Inference Time = %0.2f for Sentences = %d", predict_time_elapsed, predict_hooks[-1].count * FLAGS.predict_batch_size) tf.logging.info( "Total Inference Time W/O Overhead = %0.2f for Sentences = %d", predict_time_wo_overhead, (predict_hooks[-1].count - predict_hooks[-1].skipped) * FLAGS.predict_batch_size) tf.logging.info("Summary Inference Statistics on TEST SET") tf.logging.info("Batch size = %d", FLAGS.predict_batch_size) tf.logging.info("Sequence Length = %d", FLAGS.max_seq_length) tf.logging.info("Precision = %s", "fp16" if FLAGS.use_fp16 else "fp32") tf.logging.info("Latency Confidence Level 50 (ms) = %0.2f", cf_50 * 1000) tf.logging.info("Latency Confidence Level 90 (ms) = %0.2f", cf_90 * 1000) tf.logging.info("Latency Confidence Level 95 (ms) = %0.2f", cf_95 * 1000) tf.logging.info("Latency Confidence Level 99 (ms) = %0.2f", cf_99 * 1000) tf.logging.info("Latency Confidence Level 100 (ms) = %0.2f", cf_100 * 1000) tf.logging.info("Latency Average (ms) = %0.2f", avg * 1000) tf.logging.info("Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second) tf.logging.info("-----------------------------")
def main(_): # causes memory fragmentation for bert leading to OOM if os.environ.get("TF_XLA_FLAGS", None) is not None: os.environ["TF_XLA_FLAGS"] += " --tf_xla_enable_lazy_compilation false" else: os.environ["TF_XLA_FLAGS"] = " --tf_xla_enable_lazy_compilation false" # Enable async_io to speed up multi-gpu training with XLA and Horovod. os.environ["TF_XLA_FLAGS"] += " --tf_xla_async_io_level 1" tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) dllogging = utils.dllogger_class.dllogger_class(FLAGS.dllog_path) if FLAGS.horovod: hvd.init() bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) validate_flags_or_throw(bert_config) tf.io.gfile.makedirs(FLAGS.output_dir) tokenizer = tokenization.FullTokenizer( vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) master_process = True training_hooks = [] global_batch_size = FLAGS.train_batch_size * FLAGS.num_accumulation_steps hvd_rank = 0 config = tf.compat.v1.ConfigProto() learning_rate = FLAGS.learning_rate if FLAGS.horovod: tf.compat.v1.logging.info("Multi-GPU training with TF Horovod") tf.compat.v1.logging.info("hvd.size() = %d hvd.rank() = %d", hvd.size(), hvd.rank()) global_batch_size = FLAGS.train_batch_size * hvd.size() * FLAGS.num_accumulation_steps learning_rate = learning_rate * hvd.size() master_process = (hvd.rank() == 0) hvd_rank = hvd.rank() config.gpu_options.visible_device_list = str(hvd.local_rank()) if hvd.size() > 1: training_hooks.append(hvd.BroadcastGlobalVariablesHook(0)) if FLAGS.use_xla: config.graph_options.optimizer_options.global_jit_level = tf.compat.v1.OptimizerOptions.ON_1 if FLAGS.amp: tf.enable_resource_variables() run_config = tf.estimator.RunConfig( model_dir=FLAGS.output_dir if master_process else None, session_config=config, save_checkpoints_steps=FLAGS.save_checkpoints_steps if master_process else None, save_summary_steps=FLAGS.save_checkpoints_steps if master_process else None, log_step_count_steps=FLAGS.display_loss_steps, keep_checkpoint_max=1) if master_process: tf.compat.v1.logging.info("***** Configuaration *****") for key in FLAGS.__flags.keys(): tf.compat.v1.logging.info(' {}: {}'.format(key, getattr(FLAGS, key))) tf.compat.v1.logging.info("**************************") train_examples = None num_train_steps = None num_warmup_steps = None training_hooks.append(LogTrainRunHook(global_batch_size, hvd_rank, FLAGS.save_checkpoints_steps)) # Prepare Training Data if FLAGS.do_train: train_examples = read_squad_examples( input_file=FLAGS.train_file, is_training=True, version_2_with_negative=FLAGS.version_2_with_negative) num_train_steps = int( len(train_examples) / global_batch_size * FLAGS.num_train_epochs) num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion) # Pre-shuffle the input to avoid having to make a very large shuffle # buffer in in the `input_fn`. rng = random.Random(12345) rng.shuffle(train_examples) start_index = 0 end_index = len(train_examples) tmp_filenames = [os.path.join(FLAGS.output_dir, "train.tf_record")] if FLAGS.horovod: tmp_filenames = [os.path.join(FLAGS.output_dir, "train.tf_record{}".format(i)) for i in range(hvd.size())] num_examples_per_rank = len(train_examples) // hvd.size() remainder = len(train_examples) % hvd.size() if hvd.rank() < remainder: start_index = hvd.rank() * (num_examples_per_rank+1) end_index = start_index + num_examples_per_rank + 1 else: start_index = hvd.rank() * num_examples_per_rank + remainder end_index = start_index + (num_examples_per_rank) model_fn = model_fn_builder( bert_config=bert_config, init_checkpoint=FLAGS.init_checkpoint, learning_rate=learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, hvd=None if not FLAGS.horovod else hvd, amp=FLAGS.amp) estimator = tf.estimator.Estimator( model_fn=model_fn, config=run_config) if FLAGS.do_train: # We write to a temporary file to avoid storing very large constant tensors # in memory. train_writer = FeatureWriter( filename=tmp_filenames[hvd_rank], is_training=True) convert_examples_to_features( examples=train_examples[start_index:end_index], tokenizer=tokenizer, max_seq_length=FLAGS.max_seq_length, doc_stride=FLAGS.doc_stride, max_query_length=FLAGS.max_query_length, is_training=True, output_fn=train_writer.process_feature, verbose_logging=FLAGS.verbose_logging) train_writer.close() tf.compat.v1.logging.info("***** Running training *****") tf.compat.v1.logging.info(" Num orig examples = %d", end_index - start_index) tf.compat.v1.logging.info(" Num split examples = %d", train_writer.num_features) tf.compat.v1.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.compat.v1.logging.info(" Num steps = %d", num_train_steps) tf.compat.v1.logging.info(" LR = %f", learning_rate) del train_examples train_input_fn = input_fn_builder( input_file=tmp_filenames, batch_size=FLAGS.train_batch_size, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True, hvd=None if not FLAGS.horovod else hvd) train_start_time = time.time() estimator.train(input_fn=train_input_fn, hooks=training_hooks, max_steps=num_train_steps) train_time_elapsed = time.time() - train_start_time train_time_wo_overhead = training_hooks[-1].total_time avg_sentences_per_second = num_train_steps * global_batch_size * 1.0 / train_time_elapsed ss_sentences_per_second = (num_train_steps - training_hooks[-1].skipped) * global_batch_size * 1.0 / train_time_wo_overhead if master_process: tf.compat.v1.logging.info("-----------------------------") tf.compat.v1.logging.info("Total Training Time = %0.2f for Sentences = %d", train_time_elapsed, num_train_steps * global_batch_size) tf.compat.v1.logging.info("Total Training Time W/O Overhead = %0.2f for Sentences = %d", train_time_wo_overhead, (num_train_steps - training_hooks[-1].skipped) * global_batch_size) tf.compat.v1.logging.info("Throughput Average (sentences/sec) with overhead = %0.2f", avg_sentences_per_second) tf.compat.v1.logging.info("Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second) dllogging.logger.log(step=(), data={"throughput_train": ss_sentences_per_second}, verbosity=Verbosity.DEFAULT) tf.compat.v1.logging.info("-----------------------------") if FLAGS.export_triton and master_process: export_model(estimator, FLAGS.output_dir, FLAGS.init_checkpoint) if FLAGS.do_predict and master_process: eval_examples = read_squad_examples( input_file=FLAGS.predict_file, is_training=False, version_2_with_negative=FLAGS.version_2_with_negative) # Perform evaluation on subset, useful for profiling if FLAGS.num_eval_iterations is not None: eval_examples = eval_examples[:FLAGS.num_eval_iterations*FLAGS.predict_batch_size] eval_writer = FeatureWriter( filename=os.path.join(FLAGS.output_dir, "eval.tf_record"), is_training=False) eval_features = [] def append_feature(feature): eval_features.append(feature) eval_writer.process_feature(feature) convert_examples_to_features( examples=eval_examples, tokenizer=tokenizer, max_seq_length=FLAGS.max_seq_length, doc_stride=FLAGS.doc_stride, max_query_length=FLAGS.max_query_length, is_training=False, output_fn=append_feature, verbose_logging=FLAGS.verbose_logging) eval_writer.close() tf.compat.v1.logging.info("***** Running predictions *****") tf.compat.v1.logging.info(" Num orig examples = %d", len(eval_examples)) tf.compat.v1.logging.info(" Num split examples = %d", len(eval_features)) tf.compat.v1.logging.info(" Batch size = %d", FLAGS.predict_batch_size) predict_input_fn = input_fn_builder( input_file=eval_writer.filename, batch_size=FLAGS.predict_batch_size, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=False) all_results = [] eval_hooks = [LogEvalRunHook(FLAGS.predict_batch_size)] eval_start_time = time.time() for result in estimator.predict( predict_input_fn, yield_single_examples=True, hooks=eval_hooks): if len(all_results) % 1000 == 0: tf.compat.v1.logging.info("Processing example: %d" % (len(all_results))) unique_id = int(result["unique_ids"]) start_logits = [float(x) for x in result["start_logits"].flat] end_logits = [float(x) for x in result["end_logits"].flat] all_results.append( RawResult( unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) eval_time_elapsed = time.time() - eval_start_time time_list = eval_hooks[-1].time_list time_list.sort() # Removing outliers (init/warmup) in throughput computation. eval_time_wo_overhead = sum(time_list[:int(len(time_list) * 0.99)]) num_sentences = (int(len(time_list) * 0.99)) * FLAGS.predict_batch_size avg = np.mean(time_list) cf_50 = max(time_list[:int(len(time_list) * 0.50)]) cf_90 = max(time_list[:int(len(time_list) * 0.90)]) cf_95 = max(time_list[:int(len(time_list) * 0.95)]) cf_99 = max(time_list[:int(len(time_list) * 0.99)]) cf_100 = max(time_list[:int(len(time_list) * 1)]) ss_sentences_per_second = num_sentences * 1.0 / eval_time_wo_overhead tf.compat.v1.logging.info("-----------------------------") tf.compat.v1.logging.info("Total Inference Time = %0.2f for Sentences = %d", eval_time_elapsed, eval_hooks[-1].count * FLAGS.predict_batch_size) tf.compat.v1.logging.info("Total Inference Time W/O Overhead = %0.2f for Sentences = %d", eval_time_wo_overhead, num_sentences) tf.compat.v1.logging.info("Summary Inference Statistics") tf.compat.v1.logging.info("Batch size = %d", FLAGS.predict_batch_size) tf.compat.v1.logging.info("Sequence Length = %d", FLAGS.max_seq_length) tf.compat.v1.logging.info("Precision = %s", "fp16" if FLAGS.amp else "fp32") tf.compat.v1.logging.info("Latency Confidence Level 50 (ms) = %0.2f", cf_50 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 90 (ms) = %0.2f", cf_90 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 95 (ms) = %0.2f", cf_95 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 99 (ms) = %0.2f", cf_99 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 100 (ms) = %0.2f", cf_100 * 1000) tf.compat.v1.logging.info("Latency Average (ms) = %0.2f", avg * 1000) tf.compat.v1.logging.info("Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second) dllogging.logger.log(step=(), data={"throughput_val": ss_sentences_per_second}, verbosity=Verbosity.DEFAULT) tf.compat.v1.logging.info("-----------------------------") output_prediction_file = os.path.join(FLAGS.output_dir, "predictions.json") output_nbest_file = os.path.join(FLAGS.output_dir, "nbest_predictions.json") output_null_log_odds_file = os.path.join(FLAGS.output_dir, "null_odds.json") write_predictions(eval_examples, eval_features, all_results, FLAGS.n_best_size, FLAGS.max_answer_length, FLAGS.do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, FLAGS.version_2_with_negative, FLAGS.verbose_logging) if FLAGS.eval_script: import sys import subprocess eval_out = subprocess.check_output([sys.executable, FLAGS.eval_script, FLAGS.predict_file, output_prediction_file]) scores = str(eval_out).strip() exact_match = float(scores.split(":")[1].split(",")[0]) f1 = float(scores.split(":")[2].split("}")[0]) dllogging.logger.log(step=(), data={"f1": f1}, verbosity=Verbosity.DEFAULT) dllogging.logger.log(step=(), data={"exact_match": exact_match}, verbosity=Verbosity.DEFAULT) print(str(eval_out))
def main(_): os.environ[ "TF_XLA_FLAGS"] = "--tf_xla_enable_lazy_compilation=false" #causes memory fragmentation for bert leading to OOM tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) dllogging = utils.dllogger_class.dllogger_class(FLAGS.dllog_path) if FLAGS.horovod: hvd.init() processors = { "bc5cdr": BC5CDRProcessor, "clefe": CLEFEProcessor, 'i2b2': I2b22012Processor } if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict: raise ValueError( "At least one of `do_train` or `do_eval` must be True.") bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) if FLAGS.max_seq_length > bert_config.max_position_embeddings: raise ValueError( "Cannot use sequence length %d because the BERT model " "was only trained up to sequence length %d" % (FLAGS.max_seq_length, bert_config.max_position_embeddings)) task_name = FLAGS.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) tf.io.gfile.makedirs(FLAGS.output_dir) processor = processors[task_name]() label_list = processor.get_labels() tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 master_process = True training_hooks = [] global_batch_size = FLAGS.train_batch_size hvd_rank = 0 config = tf.compat.v1.ConfigProto() if FLAGS.horovod: global_batch_size = FLAGS.train_batch_size * hvd.size() master_process = (hvd.rank() == 0) hvd_rank = hvd.rank() config.gpu_options.visible_device_list = str(hvd.local_rank()) if hvd.size() > 1: training_hooks.append(hvd.BroadcastGlobalVariablesHook(0)) if FLAGS.use_xla: config.graph_options.optimizer_options.global_jit_level = tf.compat.v1.OptimizerOptions.ON_1 tf.enable_resource_variables() run_config = tf.estimator.RunConfig( model_dir=FLAGS.output_dir if master_process else None, session_config=config, save_checkpoints_steps=FLAGS.save_checkpoints_steps if master_process else None, keep_checkpoint_max=1) if master_process: tf.compat.v1.logging.info("***** Configuaration *****") for key in FLAGS.__flags.keys(): tf.compat.v1.logging.info(' {}: {}'.format( key, getattr(FLAGS, key))) tf.compat.v1.logging.info("**************************") train_examples = None num_train_steps = None num_warmup_steps = None training_hooks.append(LogTrainRunHook(global_batch_size, hvd_rank)) if FLAGS.do_train: train_examples = processor.get_train_examples(FLAGS.data_dir) num_train_steps = int( len(train_examples) / global_batch_size * FLAGS.num_train_epochs) num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion) start_index = 0 end_index = len(train_examples) tmp_filenames = [os.path.join(FLAGS.output_dir, "train.tf_record")] if FLAGS.horovod: tmp_filenames = [ os.path.join(FLAGS.output_dir, "train.tf_record{}".format(i)) for i in range(hvd.size()) ] num_examples_per_rank = len(train_examples) // hvd.size() remainder = len(train_examples) % hvd.size() if hvd.rank() < remainder: start_index = hvd.rank() * (num_examples_per_rank + 1) end_index = start_index + num_examples_per_rank + 1 else: start_index = hvd.rank() * num_examples_per_rank + remainder end_index = start_index + (num_examples_per_rank) model_fn = model_fn_builder(bert_config=bert_config, num_labels=len(label_list) + 1, init_checkpoint=FLAGS.init_checkpoint, learning_rate=FLAGS.learning_rate if not FLAGS.horovod else FLAGS.learning_rate * hvd.size(), num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, use_one_hot_embeddings=False, hvd=None if not FLAGS.horovod else hvd, use_fp16=FLAGS.use_fp16) estimator = tf.estimator.Estimator(model_fn=model_fn, config=run_config) if FLAGS.do_train: #train_file = os.path.join(FLAGS.output_dir, "train.tf_record") #filed_based_convert_examples_to_features( # train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file) filed_based_convert_examples_to_features( train_examples[start_index:end_index], label_list, FLAGS.max_seq_length, tokenizer, tmp_filenames[hvd_rank]) tf.compat.v1.logging.info("***** Running training *****") tf.compat.v1.logging.info(" Num examples = %d", len(train_examples)) tf.compat.v1.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.compat.v1.logging.info(" Num steps = %d", num_train_steps) train_input_fn = file_based_input_fn_builder( input_file=tmp_filenames, #train_file, batch_size=FLAGS.train_batch_size, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True, hvd=None if not FLAGS.horovod else hvd) #estimator.train(input_fn=train_input_fn, max_steps=num_train_steps) train_start_time = time.time() estimator.train(input_fn=train_input_fn, max_steps=num_train_steps, hooks=training_hooks) train_time_elapsed = time.time() - train_start_time train_time_wo_overhead = training_hooks[-1].total_time avg_sentences_per_second = num_train_steps * global_batch_size * 1.0 / train_time_elapsed ss_sentences_per_second = ( num_train_steps - training_hooks[-1].skipped ) * global_batch_size * 1.0 / train_time_wo_overhead if master_process: tf.compat.v1.logging.info("-----------------------------") tf.compat.v1.logging.info( "Total Training Time = %0.2f for Sentences = %d", train_time_elapsed, num_train_steps * global_batch_size) tf.compat.v1.logging.info( "Total Training Time W/O Overhead = %0.2f for Sentences = %d", train_time_wo_overhead, (num_train_steps - training_hooks[-1].skipped) * global_batch_size) tf.compat.v1.logging.info( "Throughput Average (sentences/sec) with overhead = %0.2f", avg_sentences_per_second) tf.compat.v1.logging.info( "Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second) dllogging.logger.log( step=(), data={"throughput_train": ss_sentences_per_second}, verbosity=Verbosity.DEFAULT) tf.compat.v1.logging.info("-----------------------------") if FLAGS.do_eval and master_process: eval_examples = processor.get_dev_examples(FLAGS.data_dir) eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record") filed_based_convert_examples_to_features(eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file) tf.compat.v1.logging.info("***** Running evaluation *****") tf.compat.v1.logging.info(" Num examples = %d", len(eval_examples)) tf.compat.v1.logging.info(" Batch size = %d", FLAGS.eval_batch_size) eval_steps = None eval_drop_remainder = False eval_input_fn = file_based_input_fn_builder( input_file=eval_file, batch_size=FLAGS.eval_batch_size, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=eval_drop_remainder) result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps) output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt") with tf.io.gfile.Open(output_eval_file, "w") as writer: tf.compat.v1.logging.info("***** Eval results *****") for key in sorted(result.keys()): tf.compat.v1.logging.info(" %s = %s", key, str(result[key])) dllogging.logger.log(step=(), data={key: float(strresult[key])}, verbosity=Verbosity.DEFAULT) writer.write("%s = %s\n" % (key, str(result[key]))) if FLAGS.do_predict and master_process: predict_examples = processor.get_test_examples(FLAGS.data_dir) predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record") filed_based_convert_examples_to_features(predict_examples, label_list, FLAGS.max_seq_length, tokenizer, predict_file, mode="test") with tf.io.gfile.Open(os.path.join(FLAGS.output_dir, 'label2id.pkl'), 'rb') as rf: label2id = pickle.load(rf) id2label = {value: key for key, value in label2id.items()} token_path = os.path.join(FLAGS.output_dir, "token_test.txt") if tf.io.gfile.Exists(token_path): tf.io.gfile.Remove(token_path) tf.compat.v1.logging.info("***** Running prediction*****") tf.compat.v1.logging.info(" Num examples = %d", len(predict_examples)) tf.compat.v1.logging.info(" Batch size = %d", FLAGS.predict_batch_size) predict_drop_remainder = False predict_input_fn = file_based_input_fn_builder( input_file=predict_file, batch_size=FLAGS.predict_batch_size, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=predict_drop_remainder) eval_hooks = [LogEvalRunHook(FLAGS.predict_batch_size)] eval_start_time = time.time() output_predict_file = os.path.join(FLAGS.output_dir, "label_test.txt") test_labels_file = os.path.join(FLAGS.output_dir, "test_labels.txt") test_labels_err_file = os.path.join(FLAGS.output_dir, "test_labels_errs.txt") with tf.io.gfile.Open(output_predict_file, 'w') as writer, \ tf.io.gfile.Open(test_labels_file, 'w') as tl, \ tf.io.gfile.Open(test_labels_err_file, 'w') as tle: print(id2label) i = 0 for prediction in estimator.predict(input_fn=predict_input_fn, hooks=eval_hooks, yield_single_examples=True): output_line = "\n".join(id2label[id] for id in prediction if id != 0) + "\n" writer.write(output_line) result_to_pair(predict_examples[i], prediction, id2label, tl, tle) i = i + 1 eval_time_elapsed = time.time() - eval_start_time time_list = eval_hooks[-1].time_list time_list.sort() # Removing outliers (init/warmup) in throughput computation. eval_time_wo_overhead = sum(time_list[:int(len(time_list) * 0.99)]) num_sentences = (int(len(time_list) * 0.99)) * FLAGS.predict_batch_size avg = np.mean(time_list) cf_50 = max(time_list[:int(len(time_list) * 0.50)]) cf_90 = max(time_list[:int(len(time_list) * 0.90)]) cf_95 = max(time_list[:int(len(time_list) * 0.95)]) cf_99 = max(time_list[:int(len(time_list) * 0.99)]) cf_100 = max(time_list[:int(len(time_list) * 1)]) ss_sentences_per_second = num_sentences * 1.0 / eval_time_wo_overhead tf.compat.v1.logging.info("-----------------------------") tf.compat.v1.logging.info( "Total Inference Time = %0.2f for Sentences = %d", eval_time_elapsed, eval_hooks[-1].count * FLAGS.predict_batch_size) tf.compat.v1.logging.info( "Total Inference Time W/O Overhead = %0.2f for Sentences = %d", eval_time_wo_overhead, num_sentences) tf.compat.v1.logging.info("Summary Inference Statistics") tf.compat.v1.logging.info("Batch size = %d", FLAGS.predict_batch_size) tf.compat.v1.logging.info("Sequence Length = %d", FLAGS.max_seq_length) tf.compat.v1.logging.info("Precision = %s", "fp16" if FLAGS.use_fp16 else "fp32") tf.compat.v1.logging.info("Latency Confidence Level 50 (ms) = %0.2f", cf_50 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 90 (ms) = %0.2f", cf_90 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 95 (ms) = %0.2f", cf_95 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 99 (ms) = %0.2f", cf_99 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 100 (ms) = %0.2f", cf_100 * 1000) tf.compat.v1.logging.info("Latency Average (ms) = %0.2f", avg * 1000) tf.compat.v1.logging.info("Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second) dllogging.logger.log(step=(), data={"throughput_val": ss_sentences_per_second}, verbosity=Verbosity.DEFAULT) tf.compat.v1.logging.info("-----------------------------") tf.compat.v1.logging.info('Reading: %s', test_labels_file) with tf.io.gfile.Open(test_labels_file, "r") as f: counts = evaluate(f) eval_result = report_notprint(counts) print(''.join(eval_result)) with tf.io.gfile.Open( os.path.join(FLAGS.output_dir, 'test_results_conlleval.txt'), 'w') as fd: fd.write(''.join(eval_result))
def main(_): # causes memory fragmentation for bert leading to OOM if os.environ.get("TF_XLA_FLAGS", None) is not None: os.environ["TF_XLA_FLAGS"] += "--tf_xla_enable_lazy_compilation=false" else: os.environ["TF_XLA_FLAGS"] = "--tf_xla_enable_lazy_compilation=false" tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) dllogging = utils.dllogger_class.dllogger_class(FLAGS.dllog_path) if FLAGS.horovod: hvd.init() processors = { "chemprot": BioBERTChemprotProcessor, 'mednli': MedNLIProcessor, } tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case, FLAGS.init_checkpoint) if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict: raise ValueError( "At least one of `do_train`, `do_eval` or `do_predict' must be True." ) bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) if FLAGS.max_seq_length > bert_config.max_position_embeddings: raise ValueError( "Cannot use sequence length %d because the BERT model " "was only trained up to sequence length %d" % (FLAGS.max_seq_length, bert_config.max_position_embeddings)) tf.io.gfile.makedirs(FLAGS.output_dir) task_name = FLAGS.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) processor = processors[task_name]() label_list = processor.get_labels() tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 master_process = True training_hooks = [] global_batch_size = FLAGS.train_batch_size hvd_rank = 0 config = tf.compat.v1.ConfigProto() if FLAGS.horovod: global_batch_size = FLAGS.train_batch_size * hvd.size() master_process = (hvd.rank() == 0) hvd_rank = hvd.rank() config.gpu_options.visible_device_list = str(hvd.local_rank()) if hvd.size() > 1: training_hooks.append(hvd.BroadcastGlobalVariablesHook(0)) if FLAGS.use_xla: config.graph_options.optimizer_options.global_jit_level = tf.compat.v1.OptimizerOptions.ON_1 tf.enable_resource_variables() run_config = tf.estimator.RunConfig( model_dir=FLAGS.output_dir if master_process else None, session_config=config, save_checkpoints_steps=FLAGS.save_checkpoints_steps if master_process else None, keep_checkpoint_max=1) if master_process: tf.compat.v1.logging.info("***** Configuaration *****") for key in FLAGS.__flags.keys(): tf.compat.v1.logging.info(' {}: {}'.format( key, getattr(FLAGS, key))) tf.compat.v1.logging.info("**************************") train_examples = None num_train_steps = None num_warmup_steps = None training_hooks.append(LogTrainRunHook(global_batch_size, hvd_rank)) if FLAGS.do_train: train_examples = processor.get_train_examples(FLAGS.data_dir) num_train_steps = int( len(train_examples) / global_batch_size * FLAGS.num_train_epochs) num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion) start_index = 0 end_index = len(train_examples) tmp_filenames = [os.path.join(FLAGS.output_dir, "train.tf_record")] if FLAGS.horovod: tmp_filenames = [ os.path.join(FLAGS.output_dir, "train.tf_record{}".format(i)) for i in range(hvd.size()) ] num_examples_per_rank = len(train_examples) // hvd.size() remainder = len(train_examples) % hvd.size() if hvd.rank() < remainder: start_index = hvd.rank() * (num_examples_per_rank + 1) end_index = start_index + num_examples_per_rank + 1 else: start_index = hvd.rank() * num_examples_per_rank + remainder end_index = start_index + (num_examples_per_rank) model_fn = model_fn_builder(bert_config=bert_config, num_labels=len(label_list), init_checkpoint=FLAGS.init_checkpoint, learning_rate=FLAGS.learning_rate if not FLAGS.horovod else FLAGS.learning_rate * hvd.size(), num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, use_one_hot_embeddings=False, hvd=None if not FLAGS.horovod else hvd, amp=FLAGS.amp) estimator = tf.estimator.Estimator(model_fn=model_fn, config=run_config) if FLAGS.do_train: file_based_convert_examples_to_features( train_examples[start_index:end_index], label_list, FLAGS.max_seq_length, tokenizer, tmp_filenames[hvd_rank]) tf.compat.v1.logging.info("***** Running training *****") tf.compat.v1.logging.info(" Num examples = %d", len(train_examples)) tf.compat.v1.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.compat.v1.logging.info(" Num steps = %d", num_train_steps) train_input_fn = file_based_input_fn_builder( input_file=tmp_filenames, batch_size=FLAGS.train_batch_size, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True, hvd=None if not FLAGS.horovod else hvd) train_start_time = time.time() estimator.train(input_fn=train_input_fn, max_steps=num_train_steps, hooks=training_hooks) train_time_elapsed = time.time() - train_start_time train_time_wo_overhead = training_hooks[-1].total_time avg_sentences_per_second = num_train_steps * global_batch_size * 1.0 / train_time_elapsed ss_sentences_per_second = ( num_train_steps - training_hooks[-1].skipped ) * global_batch_size * 1.0 / train_time_wo_overhead if master_process: tf.compat.v1.logging.info("-----------------------------") tf.compat.v1.logging.info( "Total Training Time = %0.2f for Sentences = %d", train_time_elapsed, num_train_steps * global_batch_size) tf.compat.v1.logging.info( "Total Training Time W/O Overhead = %0.2f for Sentences = %d", train_time_wo_overhead, (num_train_steps - training_hooks[-1].skipped) * global_batch_size) tf.compat.v1.logging.info( "Throughput Average (sentences/sec) with overhead = %0.2f", avg_sentences_per_second) tf.compat.v1.logging.info( "Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second) dllogging.logger.log( step=(), data={"throughput_train": ss_sentences_per_second}, verbosity=Verbosity.DEFAULT) tf.compat.v1.logging.info("-----------------------------") if FLAGS.do_eval and master_process: eval_examples = processor.get_dev_examples(FLAGS.data_dir) num_actual_eval_examples = len(eval_examples) eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record") file_based_convert_examples_to_features(eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file) tf.compat.v1.logging.info("***** Running evaluation *****") tf.compat.v1.logging.info( " Num examples = %d (%d actual, %d padding)", len(eval_examples), num_actual_eval_examples, len(eval_examples) - num_actual_eval_examples) tf.compat.v1.logging.info(" Batch size = %d", FLAGS.eval_batch_size) # This tells the estimator to run through the entire set. eval_steps = None eval_drop_remainder = False eval_input_fn = file_based_input_fn_builder( input_file=eval_file, batch_size=FLAGS.eval_batch_size, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=eval_drop_remainder) result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps) output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt") with tf.io.gfile.GFile(output_eval_file, "w") as writer: tf.compat.v1.logging.info("***** Eval results *****") for key in sorted(result.keys()): tf.compat.v1.logging.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) if FLAGS.do_predict and master_process: predict_examples = processor.get_test_examples(FLAGS.data_dir) num_actual_predict_examples = len(predict_examples) predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record") file_based_convert_examples_to_features(predict_examples, label_list, FLAGS.max_seq_length, tokenizer, predict_file) tf.compat.v1.logging.info("***** Running prediction*****") tf.compat.v1.logging.info( " Num examples = %d (%d actual, %d padding)", len(predict_examples), num_actual_predict_examples, len(predict_examples) - num_actual_predict_examples) tf.compat.v1.logging.info(" Batch size = %d", FLAGS.predict_batch_size) predict_drop_remainder = False predict_input_fn = file_based_input_fn_builder( input_file=predict_file, batch_size=FLAGS.predict_batch_size, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=predict_drop_remainder) eval_hooks = [LogEvalRunHook(FLAGS.predict_batch_size)] eval_start_time = time.time() output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv") with tf.io.gfile.GFile(output_predict_file, "w") as writer: num_written_lines = 0 tf.compat.v1.logging.info("***** Predict results *****") for prediction in estimator.predict(input_fn=predict_input_fn, hooks=eval_hooks, yield_single_examples=True): probabilities = prediction["probabilities"] output_line = "\t".join( str(class_probability) for class_probability in probabilities) + "\n" writer.write(output_line) num_written_lines += 1 assert num_written_lines == num_actual_predict_examples eval_time_elapsed = time.time() - eval_start_time time_list = eval_hooks[-1].time_list time_list.sort() # Removing outliers (init/warmup) in throughput computation. eval_time_wo_overhead = sum(time_list[:int(len(time_list) * 0.99)]) num_sentences = (int(len(time_list) * 0.99)) * FLAGS.predict_batch_size avg = np.mean(time_list) cf_50 = max(time_list[:int(len(time_list) * 0.50)]) cf_90 = max(time_list[:int(len(time_list) * 0.90)]) cf_95 = max(time_list[:int(len(time_list) * 0.95)]) cf_99 = max(time_list[:int(len(time_list) * 0.99)]) cf_100 = max(time_list[:int(len(time_list) * 1)]) ss_sentences_per_second = num_sentences * 1.0 / eval_time_wo_overhead tf.compat.v1.logging.info("-----------------------------") tf.compat.v1.logging.info( "Total Inference Time = %0.2f for Sentences = %d", eval_time_elapsed, eval_hooks[-1].count * FLAGS.predict_batch_size) tf.compat.v1.logging.info( "Total Inference Time W/O Overhead = %0.2f for Sentences = %d", eval_time_wo_overhead, num_sentences) tf.compat.v1.logging.info("Summary Inference Statistics") tf.compat.v1.logging.info("Batch size = %d", FLAGS.predict_batch_size) tf.compat.v1.logging.info("Sequence Length = %d", FLAGS.max_seq_length) tf.compat.v1.logging.info("Precision = %s", "fp16" if FLAGS.amp else "fp32") tf.compat.v1.logging.info("Latency Confidence Level 50 (ms) = %0.2f", cf_50 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 90 (ms) = %0.2f", cf_90 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 95 (ms) = %0.2f", cf_95 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 99 (ms) = %0.2f", cf_99 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 100 (ms) = %0.2f", cf_100 * 1000) tf.compat.v1.logging.info("Latency Average (ms) = %0.2f", avg * 1000) tf.compat.v1.logging.info("Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second) dllogging.logger.log(step=(), data={"throughput_val": ss_sentences_per_second}, verbosity=Verbosity.DEFAULT) tf.compat.v1.logging.info("-----------------------------")
def main(_): os.environ["TF_XLA_FLAGS"] = "--tf_xla_enable_lazy_compilation=false" #causes memory fragmentation for bert leading to OOM os.environ["XLA_FLAGS"]="--xla_gpu_cuda_data_dir=/appl/spack/install-tree/gcc-8.3.0/cuda-10.1.168-mrdepn/" #os.environ["TF_CUDA_HOST_MEM_LIMIT_IN_MB"] = "30000" #os.environ["TF_XLA_FLAGS"]="--tf_xla_cpu_global_jit" tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) #dllogging = utils.dllogger_class.dllogger_class(FLAGS.dllog_path) if FLAGS.horovod: hvd.init() #if FLAGS.use_fp16: # os.environ["TF_ENABLE_AUTO_MIXED_PRECISION_GRAPH_REWRITE"] = "1" processors = {'consensus':ConsensusProcessor} tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case, FLAGS.init_checkpoint) if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict: raise ValueError("At least one of `do_train` or `do_eval` must be True.") bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) if FLAGS.max_seq_length > bert_config.max_position_embeddings: raise ValueError( "Cannot use sequence length %d because the BERT model " "was only trained up to sequence length %d" % (FLAGS.max_seq_length, bert_config.max_position_embeddings)) task_name = FLAGS.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) tf.io.gfile.makedirs(FLAGS.output_dir) processor = processors[task_name]() label_list,label_map = processor.get_labels(FLAGS.labels_dir) inv_label_map = { v: k for k, v in label_map.items() } #label_list = processor.get_labels() tokenizer = tokenization.FullTokenizer( vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 master_process = True training_hooks = [] #training_hooks.append(OomReportingHook()) global_batch_size = FLAGS.train_batch_size hvd_rank = 0 config = tf.compat.v1.ConfigProto() #didn't work #config.gpu_options.allow_growth = True if FLAGS.horovod: global_batch_size = FLAGS.train_batch_size * hvd.size() master_process = (hvd.rank() == 0) hvd_rank = hvd.rank() #os.environ['CUDA_VISIBLE_DEVICES'] = str(hvd.local_rank()) config.gpu_options.visible_device_list = str(hvd.local_rank()) if hvd.size() > 1: training_hooks.append(hvd.BroadcastGlobalVariablesHook(0)) #config.gpu_options.per_process_gpu_memory_fraction = 0.4 # config.gpu_options.per_process_gpu_memory_fraction = 0.7 if FLAGS.use_xla: config.graph_options.optimizer_options.global_jit_level = tf.compat.v1.OptimizerOptions.ON_1 #config.graph_options.rewrite_options.memory_optimization = rewriter_config_pb2.RewriterConfig.NO_MEM_OPT run_config = tf.estimator.RunConfig( model_dir=FLAGS.output_dir if master_process else None, session_config=config, save_checkpoints_steps=FLAGS.save_checkpoints_steps if master_process else None, keep_checkpoint_max=1) if master_process: tf.compat.v1.logging.info("***** Configuration *****") for key in FLAGS.__flags.keys(): tf.compat.v1.logging.info(' {}: {}'.format(key, getattr(FLAGS, key))) tf.compat.v1.logging.info("**************************") train_examples = None num_train_steps = None num_warmup_steps = None training_hooks.append(LogTrainRunHook(global_batch_size, hvd_rank)) if FLAGS.do_train: train_examples = processor.get_train_examples(FLAGS.data_dir) num_train_steps = int( len(train_examples) / global_batch_size * FLAGS.num_train_epochs) num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion) start_index = 0 end_index = len(train_examples) tmp_filenames = [os.path.join(FLAGS.output_dir, "train.tf_record")] if FLAGS.horovod: tmp_filenames = [os.path.join(FLAGS.output_dir, "train.tf_record{}".format(i)) for i in range(hvd.size())] num_examples_per_rank = len(train_examples) // hvd.size() remainder = len(train_examples) % hvd.size() if hvd.rank() < remainder: start_index = hvd.rank() * (num_examples_per_rank+1) end_index = start_index + num_examples_per_rank + 1 else: start_index = hvd.rank() * num_examples_per_rank + remainder end_index = start_index + (num_examples_per_rank) model_fn = model_fn_builder( bert_config=bert_config, num_labels=len(label_list) + 1, init_checkpoint=FLAGS.init_checkpoint, learning_rate=FLAGS.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, use_one_hot_embeddings=False, hvd=None if not FLAGS.horovod else hvd, use_fp16=FLAGS.use_fp16) estimator = tf.estimator.Estimator( model_fn=model_fn, config=run_config) if FLAGS.do_train: filed_based_convert_examples_to_features( train_examples[start_index:end_index], label_list, label_map, FLAGS.max_seq_length, tokenizer, tmp_filenames[hvd_rank], FLAGS.replace_span) tf.compat.v1.logging.info("***** Running training *****") tf.compat.v1.logging.info(" Num examples = %d", len(train_examples)) tf.compat.v1.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.compat.v1.logging.info(" Num steps = %d", num_train_steps) tf.compat.v1.logging.info(" Num of labels = %d", len(label_list)) train_input_fn = file_based_input_fn_builder( input_file=tmp_filenames, batch_size=FLAGS.train_batch_size, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True, hvd=None if not FLAGS.horovod else hvd) train_start_time = time.time() estimator.train(input_fn=train_input_fn, max_steps=num_train_steps, hooks=training_hooks) train_time_elapsed = time.time() - train_start_time train_time_wo_overhead = training_hooks[-1].total_time avg_sentences_per_second = num_train_steps * global_batch_size * 1.0 / train_time_elapsed ss_sentences_per_second = (num_train_steps - training_hooks[-1].skipped) * global_batch_size * 1.0 / train_time_wo_overhead if master_process: tf.compat.v1.logging.info("-----------------------------") tf.compat.v1.logging.info("Total Training Time = %0.2f for Sentences = %d", train_time_elapsed, num_train_steps * global_batch_size) tf.compat.v1.logging.info("Total Training Time W/O Overhead = %0.2f for Sentences = %d", train_time_wo_overhead, (num_train_steps - training_hooks[-1].skipped) * global_batch_size) tf.compat.v1.logging.info("Throughput Average (sentences/sec) with overhead = %0.2f", avg_sentences_per_second) tf.compat.v1.logging.info("Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second) tf.compat.v1.logging.info("-----------------------------") if FLAGS.do_eval and master_process: eval_examples = processor.get_dev_examples(FLAGS.data_dir) num_actual_eval_examples = len(eval_examples) eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record") filed_based_convert_examples_to_features( eval_examples, label_list, label_map, FLAGS.max_seq_length, tokenizer, eval_file, FLAGS.replace_span) tf.compat.v1.logging.info("***** Running evaluation *****") tf.compat.v1.logging.info(" Num examples = %d (%d actual, %d padding)", len(eval_examples), num_actual_eval_examples, len(eval_examples) - num_actual_eval_examples) tf.compat.v1.logging.info(" Batch size = %d", FLAGS.eval_batch_size) # This tells the estimator to run through the entire set. eval_steps = None eval_drop_remainder = False eval_input_fn = file_based_input_fn_builder( input_file=eval_file, batch_size=FLAGS.eval_batch_size, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=eval_drop_remainder) result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps) output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt") with tf.io.gfile.GFile(output_eval_file, "w") as writer: tf.compat.v1.logging.info("***** Eval results *****") for key in sorted(result.keys()): tf.compat.v1.logging.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) eval_hooks = [LogEvalRunHook(FLAGS.eval_batch_size)] if FLAGS.do_predict and master_process: predict_examples = processor.get_test_examples(FLAGS.data_dir) num_actual_predict_examples = len(predict_examples) predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record") filed_based_convert_examples_to_features(predict_examples, label_list, label_map, FLAGS.max_seq_length, tokenizer, predict_file, FLAGS.replace_span) tf.compat.v1.logging.info("***** Running prediction*****") tf.compat.v1.logging.info(" Num examples = %d (%d actual, %d padding)", len(predict_examples), num_actual_predict_examples, len(predict_examples) - num_actual_predict_examples) tf.compat.v1.logging.info(" Batch size = %d", FLAGS.predict_batch_size) predict_drop_remainder = False predict_input_fn = file_based_input_fn_builder( input_file=predict_file, batch_size=FLAGS.predict_batch_size, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=predict_drop_remainder) eval_hooks = [LogEvalRunHook(FLAGS.predict_batch_size)] eval_start_time = time.time() output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv") output_class_file = os.path.join(FLAGS.output_dir, "test_output_labels.txt") with tf.io.gfile.GFile(output_predict_file, "w") as writer, tf.io.gfile.GFile(output_class_file, "w") as writer2: num_written_lines = 0 tf.compat.v1.logging.info("***** Predict results *****") for prediction in estimator.predict(input_fn=predict_input_fn, hooks=eval_hooks, yield_single_examples=True): probabilities = prediction["probabilities"] logits = prediction["logits"] pr_res = np.argmax(logits, axis=-1) output = str(inv_label_map[pr_res])+"\n" writer2.write(output) output_line = "\t".join( str(class_probability) for class_probability in probabilities) + "\n" writer.write(output_line) num_written_lines += 1 assert num_written_lines == num_actual_predict_examples eval_time_elapsed = time.time() - eval_start_time eval_time_wo_overhead = eval_hooks[-1].total_time time_list = eval_hooks[-1].time_list time_list.sort() num_sentences = (eval_hooks[-1].count - eval_hooks[-1].skipped) * FLAGS.predict_batch_size avg = np.mean(time_list) cf_50 = max(time_list[:int(len(time_list) * 0.50)]) cf_90 = max(time_list[:int(len(time_list) * 0.90)]) cf_95 = max(time_list[:int(len(time_list) * 0.95)]) cf_99 = max(time_list[:int(len(time_list) * 0.99)]) cf_100 = max(time_list[:int(len(time_list) * 1)]) ss_sentences_per_second = num_sentences * 1.0 / eval_time_wo_overhead tf.compat.v1.logging.info("-----------------------------") tf.compat.v1.logging.info("Total Inference Time = %0.2f for Sentences = %d", eval_time_elapsed, eval_hooks[-1].count * FLAGS.predict_batch_size) tf.compat.v1.logging.info("Total Inference Time W/O Overhead = %0.2f for Sentences = %d", eval_time_wo_overhead, (eval_hooks[-1].count - eval_hooks[-1].skipped) * FLAGS.predict_batch_size) tf.compat.v1.logging.info("Summary Inference Statistics") tf.compat.v1.logging.info("Batch size = %d", FLAGS.predict_batch_size) tf.compat.v1.logging.info("Sequence Length = %d", FLAGS.max_seq_length) tf.compat.v1.logging.info("Precision = %s", "fp16" if FLAGS.use_fp16 else "fp32") tf.compat.v1.logging.info("Latency Confidence Level 50 (ms) = %0.2f", cf_50 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 90 (ms) = %0.2f", cf_90 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 95 (ms) = %0.2f", cf_95 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 99 (ms) = %0.2f", cf_99 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 100 (ms) = %0.2f", cf_100 * 1000) tf.compat.v1.logging.info("Latency Average (ms) = %0.2f", avg * 1000) tf.compat.v1.logging.info("Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second) tf.compat.v1.logging.info("-----------------------------")
def main(_): tf.logging.set_verbosity(tf.logging.INFO) if FLAGS.horovod: hvd.init() if FLAGS.use_fp16: os.environ["TF_ENABLE_AUTO_MIXED_PRECISION_GRAPH_REWRITE"] = "1" model_fn_builder, file_based_input_fn_builder, eval_file_based_input_fn_builder = get_func_by_task( FLAGS.task_name.lower()) if not FLAGS.do_train: raise ValueError("`do_train` must be True.") query_bert_config = modeling_bison.BertConfig.from_json_file( FLAGS.query_bert_config_file) meta_bert_config = modeling_bison.BertConfig.from_json_file( FLAGS.meta_bert_config_file) # Sequence length check if FLAGS.max_seq_length_query > query_bert_config.max_position_embeddings: raise ValueError( "Cannot use query sequence length %d because the BERT model " "was only trained up to sequence length %d" % (FLAGS.max_seq_length_query, query_bert_config.max_position_embeddings)) meta_seq_length = FLAGS.max_seq_length_url + FLAGS.max_seq_length_title if FLAGS.enable_body: meta_seq_length += FLAGS.max_seq_length_body if meta_seq_length > meta_bert_config.max_position_embeddings: raise ValueError( "Cannot use meta sequence length %d because the BERT model " "was only trained up to sequence length %d" % (meta_seq_length, meta_bert_config.max_position_embeddings)) master_process = True training_hooks = [] global_batch_size = FLAGS.train_batch_size * FLAGS.num_accumulation_steps hvd_rank = 0 config = tf.ConfigProto() if FLAGS.horovod: tf.logging.info("Multi-GPU training with TF Horovod") tf.logging.info("hvd.size() = %d hvd.rank() = %d", hvd.size(), hvd.rank()) global_batch_size = FLAGS.train_batch_size * \ FLAGS.num_accumulation_steps * hvd.size() master_process = (hvd.rank() == 0) hvd_rank = hvd.rank() config.gpu_options.allow_growth = True config.gpu_options.visible_device_list = str(hvd.local_rank()) if hvd.size() > 1: training_hooks.append(hvd.BroadcastGlobalVariablesHook(0)) if FLAGS.use_xla: config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1 tf.gfile.MakeDirs(FLAGS.output_dir) run_config = tf.estimator.RunConfig( model_dir=FLAGS.output_dir if master_process else None, session_config=config, save_checkpoints_steps=FLAGS.save_checkpoints_steps if master_process else None, keep_checkpoint_max=10) if master_process: tf.logging.info("***** Configuaration *****") for key in FLAGS.__flags.keys(): tf.logging.info(' {}: {}'.format(key, getattr(FLAGS, key))) tf.logging.info("**************************") train_examples = None num_train_steps = None num_warmup_steps = None train_examples_count = FLAGS.train_line_count log_train_run_hook = LogTrainRunHook(global_batch_size, hvd_rank) training_hooks.append(log_train_run_hook) if FLAGS.do_train: num_train_steps = int(train_examples_count / global_batch_size * FLAGS.num_train_epochs) num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion) model_fn = model_fn_builder( query_bert_config=query_bert_config, meta_bert_config=meta_bert_config, init_checkpoint=FLAGS.init_checkpoint, learning_rate=FLAGS.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, use_one_hot_embeddings=FLAGS.use_one_hot_embeddings, nce_temperature=FLAGS.nce_temperature, nce_weight=FLAGS.nce_weight, hvd=None if not FLAGS.horovod else hvd) estimator = tf.estimator.Estimator(model_fn=model_fn, config=run_config) if FLAGS.do_train: start_index = 0 end_index = FLAGS.train_partition_count if FLAGS.horovod: tfrecord_per_GPU = int(FLAGS.train_partition_count / hvd.size()) start_index = hvd.rank() * tfrecord_per_GPU end_index = start_index + tfrecord_per_GPU if hvd.rank() == hvd.size(): end_index = FLAGS.train_partition_count tf.logging.info("***** Running training *****") tf.logging.info(" Num examples = %d", train_examples_count) tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.logging.info(" Num steps = %d", num_train_steps) tf.logging.info(" hvd rank = %d", hvd.rank()) tf.logging.info(" Num start_index = %d", start_index) tf.logging.info(" Num end_index = %d", end_index) train_file_list = [] for i in range(start_index, end_index): train_file_list.append( os.path.join(FLAGS.preprocess_train_dir, str(i), FLAGS.preprocess_train_file_name)) tf.logging.info("merge " + str(end_index - start_index) + " preprocessed file from preprocess dir") tf.logging.info(train_file_list) train_input_fn = file_based_input_fn_builder( input_file=train_file_list, batch_size=FLAGS.train_batch_size, query_seq_length=FLAGS.max_seq_length_query, meta_seq_length=meta_seq_length, is_training=True, drop_remainder=True, is_fidelity_eval=False, hvd=None if not FLAGS.horovod else hvd) # initilize eval file # must set preprocess_eval_dir, all file in folder preprocess_eval_dir will thinked as tfrecord file if FLAGS.preprocess_eval_dir is None: raise ValueError('must set preprocess_eval_dir by hand.') all_eval_files = [] eval_file_list = [] find_all_file_in_folder(FLAGS.preprocess_eval_dir, all_eval_files) for i in range(len(all_eval_files)): if hvd.rank() == i % hvd.size(): eval_file_list.append(all_eval_files[i]) if 0 == len(eval_file_list): raise ValueError(' Rank: %d get eval file empty.' % (hvd.rank())) tf.logging.info( "**********Check how many eval example in current rank*************" ) eval_examples_count = check_line_count_in_tfrecords(eval_file_list) eval_steps = int(math.ceil(eval_examples_count / FLAGS.eval_batch_size)) tf.logging.info("***** Running evaluation *****") tf.logging.info(" Rank: %d will eval files:%s" % (hvd.rank(), str(eval_file_list))) tf.logging.info(" Rank: %d eval example count:%d" % (hvd.rank(), eval_examples_count)) tf.logging.info(" Rank: %d eval batch size:%d" % (hvd.rank(), FLAGS.eval_batch_size)) tf.logging.info(" Rank: %d eval_steps:%d" % (hvd.rank(), eval_steps)) eval_input_fn = eval_file_based_input_fn_builder( input_file=eval_file_list, query_seq_length=FLAGS.max_seq_length_query, meta_seq_length=meta_seq_length, drop_remainder=False, is_fidelity_eval=False) # create InMemoryEvaluatorHook in_memory_evaluator = tf.estimator.experimental.InMemoryEvaluatorHook( estimator=estimator, steps= eval_steps, # steps must be set or will not print any log, do not know why input_fn=eval_input_fn, every_n_iter=FLAGS.save_checkpoints_steps, name="fidelity_eval") training_hooks.append(in_memory_evaluator) train_start_time = time.time() estimator.train(input_fn=train_input_fn, max_steps=num_train_steps, hooks=training_hooks) train_time_elapsed = time.time() - train_start_time train_time_wo_overhead = log_train_run_hook.total_time avg_sentences_per_second = num_train_steps * \ global_batch_size * 1.0 / train_time_elapsed ss_sentences_per_second = ( num_train_steps - log_train_run_hook.skipped ) * global_batch_size * 1.0 / train_time_wo_overhead if master_process: tf.logging.info("-----------------------------") tf.logging.info("Total Training Time = %0.2f for Sentences = %d", train_time_elapsed, num_train_steps * global_batch_size) tf.logging.info( "Total Training Time W/O Overhead = %0.2f for Sentences = %d", train_time_wo_overhead, (num_train_steps - log_train_run_hook.skipped) * global_batch_size) tf.logging.info( "Throughput Average (sentences/sec) with overhead = %0.2f", avg_sentences_per_second) tf.logging.info("Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second) tf.logging.info("-----------------------------")
def main(_): tf.logging.set_verbosity(tf.logging.INFO) if FLAGS.horovod: hvd.init() if FLAGS.use_fp16: os.environ["TF_ENABLE_AUTO_MIXED_PRECISION_GRAPH_REWRITE"] = "1" bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) validate_flags_or_throw(bert_config) tf.gfile.MakeDirs(FLAGS.output_dir) tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) master_process = True training_hooks = [] global_batch_size = FLAGS.train_batch_size * FLAGS.num_accumulation_steps hvd_rank = 0 config = tf.ConfigProto() learning_rate = 2e-5 #FLAGS.learning_rate # if FLAGS.horovod: # # tf.logging.info("Multi-GPU training with TF Horovod") # tf.logging.info("hvd.size() = %d hvd.rank() = %d", hvd.size(), hvd.rank()) # global_batch_size = FLAGS.train_batch_size * hvd.size() * FLAGS.num_accumulation_steps # learning_rate = learning_rate * hvd.size() # master_process = (hvd.rank() == 0) # hvd_rank = hvd.rank() # config.gpu_options.visible_device_list = str(hvd.local_rank()) # if hvd.size() > 1: # training_hooks.append(hvd.BroadcastGlobalVariablesHook(0)) # if FLAGS.use_xla: # config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1 run_config = tf.estimator.RunConfig( model_dir=FLAGS.output_dir if master_process else None, session_config=config, save_checkpoints_steps=FLAGS.save_checkpoints_steps if master_process else None, keep_checkpoint_max=1) if master_process: tf.logging.info("***** Configuaration *****") for key in FLAGS.__flags.keys(): tf.logging.info(' {}: {}'.format(key, getattr(FLAGS, key))) tf.logging.info("**************************") train_examples = None num_train_steps = 1564 # CHECK: make it to none num_warmup_steps = 1000 training_hooks.append( LogTrainRunHook(global_batch_size, hvd_rank, FLAGS.save_checkpoints_steps)) # Prepare Training Data # if FLAGS.do_train: # train_examples = read_squad_examples( # input_file=FLAGS.train_file, is_training=True, # version_2_with_negative=FLAGS.version_2_with_negative) # num_train_steps = int( # len(train_examples) / global_batch_size * FLAGS.num_train_epochs) # num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion) # # # Pre-shuffle the input to avoid having to make a very large shuffle # # buffer in in the `input_fn`. # rng = random.Random(12345) # rng.shuffle(train_examples) # # start_index = 0 # end_index = len(train_examples) # tmp_filenames = [os.path.join(FLAGS.output_dir, "train.tf_record")] # # if FLAGS.horovod: # tmp_filenames = [os.path.join(FLAGS.output_dir, "train.tf_record{}".format(i)) for i in range(hvd.size())] # num_examples_per_rank = len(train_examples) // hvd.size() # remainder = len(train_examples) % hvd.size() # if hvd.rank() < remainder: # start_index = hvd.rank() * (num_examples_per_rank+1) # end_index = start_index + num_examples_per_rank + 1 # else: # start_index = hvd.rank() * num_examples_per_rank + remainder # end_index = start_index + (num_examples_per_rank) model_fn = model_fn_builder( bert_config=bert_config, init_checkpoint=FLAGS.init_checkpoint, learning_rate=learning_rate, #2e-5 num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, hvd=None if not FLAGS.horovod else hvd, use_fp16=FLAGS.use_fp16) estimator = tf.estimator.Estimator(model_fn=model_fn, config=run_config) # if FLAGS.do_train: # # # We write to a temporary file to avoid storing very large constant tensors # # in memory. # train_writer = FeatureWriter( # filename=tmp_filenames[hvd_rank], # is_training=True) # convert_examples_to_features( # examples=train_examples[start_index:end_index], # tokenizer=tokenizer, # max_seq_length=FLAGS.max_seq_length, # doc_stride=FLAGS.doc_stride, # max_query_length=FLAGS.max_query_length, # is_training=True, # output_fn=train_writer.process_feature, # verbose_logging=FLAGS.verbose_logging) # train_writer.close() # # tf.logging.info("***** Running training *****") # tf.logging.info(" Num orig examples = %d", end_index - start_index) # tf.logging.info(" Num split examples = %d", train_writer.num_features) # tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) # tf.logging.info(" Num steps = %d", num_train_steps) # tf.logging.info(" LR = %f", learning_rate) # del train_examples # # train_input_fn = input_fn_builder( # input_file=tmp_filenames, # batch_size=FLAGS.train_batch_size, # seq_length=FLAGS.max_seq_length, # is_training=True, # drop_remainder=True, # hvd=None if not FLAGS.horovod else hvd) # # train_start_time = time.time() # estimator.train(input_fn=train_input_fn, hooks=training_hooks, max_steps=num_train_steps) # train_time_elapsed = time.time() - train_start_time # train_time_wo_overhead = training_hooks[-1].total_time # avg_sentences_per_second = num_train_steps * global_batch_size * 1.0 / train_time_elapsed # ss_sentences_per_second = (num_train_steps - training_hooks[-1].skipped) * global_batch_size * 1.0 / train_time_wo_overhead # # if master_process: # tf.logging.info("-----------------------------") # tf.logging.info("Total Training Time = %0.2f for Sentences = %d", train_time_elapsed, # num_train_steps * global_batch_size) # tf.logging.info("Total Training Time W/O Overhead = %0.2f for Sentences = %d", train_time_wo_overhead, # (num_train_steps - training_hooks[-1].skipped) * global_batch_size) # tf.logging.info("Throughput Average (sentences/sec) with overhead = %0.2f", avg_sentences_per_second) # tf.logging.info("Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second) # tf.logging.info("-----------------------------") if FLAGS.export_trtis and master_process: export_model(estimator, FLAGS.output_dir, FLAGS.init_checkpoint)