def __init__(self, faster_rcnn, optimizer): super(FasterRCNNTrainer, self).__init__() self.faster_rcnn = faster_rcnn self.rpn_sigma = 1 self.roi_sigma = 1 self.anchor_target_creator = AnchorTargetCreator() self.proposal_target_creator = ProposalTargetCreator() self.loc_normalize_mean = [0, 0, 0, 0] self.loc_normalize_std = [0.1, 0.1, 0.2, 0.2] self.optimizer = optimizer
def __init__(self): super(trainer, self).__init__() self.total_loss = 0. self.rpn_reg_loss = 0. self.rpn_cls_loss = 0. self.reg_loss = 0. self.cls_loss = 0. self.model=FRCNN('train') self.model.get_data_loader(shuffule=False) self.model.get_network() self.n_sample = [256, 128] # number of samples for two stage targets self.at = AnchorTargetCreator(self.n_sample[0]) # generate labels for rpn self.pt = ProposalTargetCreator(self.n_sample[1]) # generate labels for classifier self.post_thre = n_train_post_nms # number of rois kept for each image
def __init__(self, faster_rcnn,optimizer): super(FasterRCNNTrainer, self).__init__() self.faster_rcnn = faster_rcnn self.rpn_sigma = 3 self.roi_sigma = 1 # target creator create gt_bbox gt_label etc as training targets. self.anchor_target_creator = AnchorTargetCreator() self.proposal_target_creator = ProposalTargetCreator() self.loc_normalize_mean = faster_rcnn.loc_normalize_mean self.loc_normalize_std = faster_rcnn.loc_normalize_std self.optimizer = optimizer