예제 #1
0
    def set_callbacks(self, file_model=None, epochs=None):
        if epochs is None:
            epochs = self.epochs
        callbacks = []
        # Create the Learning rate scheduler.
        total_steps = int(epochs * self.y_train.shape[0] / self.batch_size)
        warm_up_steps = int(self.warmup_epochs * self.y_train.shape[0] /
                            self.batch_size)
        base_steps = total_steps * (not self.cosine_decay)
        if self.cosine_decay:
            schedule = WarmUpCosineDecayScheduler(
                learning_rate_base=self.learning_rate_base,
                total_steps=total_steps,
                warmup_learning_rate=0.0,
                warmup_steps=warm_up_steps,
                hold_base_rate_steps=base_steps)
            #schedule = LearningRateScheduler(lr_schedule)
        else:
            schedule = CLRScheduler(max_lr=self.learning_rate_base,
                                    min_lr=0.00002,
                                    total_steps=total_steps)
        callbacks.append(schedule)
        min_val_acc = (1. / self.num_clases) + 0.1
        early_stop = EarlyStopByTimeAndAcc(limit_time=360,
                                           baseline=min_val_acc,
                                           patience=8)
        callbacks.append(early_stop)
        print("No Early stopping")
        # callbacks.append(EarlyStopping(monitor='val_acc', patience=epochs//5, baseline=min_val_acc))
        val_acc = 'val_accuracy' if keras.__version__ == '2.3.1' else 'val_acc'
        if file_model is not None:
            # checkpoint_last = ModelCheckpoint(file_model)
            # checkpoint_loss = ModelCheckpoint(file_model, monitor='val_loss', save_best_only=True)
            checkpoint_acc = ModelCheckpoint(file_model,
                                             monitor=val_acc,
                                             save_best_only=True)
            callbacks.append(checkpoint_acc)

        if self.early_stop > 0 and keras.__version__ == '2.2.4':
            callbacks.append(
                EarlyStopping(monitor=val_acc,
                              patience=self.early_stop,
                              restore_best_weights=True))
        elif self.early_stop > 0:
            callbacks.append(
                EarlyStopping(monitor=val_acc, patience=self.early_stop))
        if self.reduce_plateu:
            callbacks.append(
                ReduceLROnPlateau(monitor=val_acc,
                                  factor=0.2,
                                  patience=5,
                                  verbose=self.verb))

        return callbacks
예제 #2
0
        batch_size = 2
        learning_rate_base = 1e-3

        if Cosine_scheduler:
            # 预热期
            warmup_epoch = int((Freeze_epoch - Init_epoch) * 0.2)
            # 总共的步长
            total_steps = int(
                (Freeze_epoch - Init_epoch) * num_train / batch_size)
            # 预热步长
            warmup_steps = int(warmup_epoch * num_train / batch_size)
            # 学习率
            reduce_lr = WarmUpCosineDecayScheduler(
                learning_rate_base=learning_rate_base,
                total_steps=total_steps,
                warmup_learning_rate=1e-4,
                warmup_steps=warmup_steps,
                hold_base_rate_steps=num_train,
                min_learn_rate=1e-6)
            model.compile(optimizer=Adam(),
                          loss={
                              'yolo_loss': lambda y_true, y_pred: y_pred
                          })
        else:
            reduce_lr = ReduceLROnPlateau(monitor='val_loss',
                                          factor=0.5,
                                          patience=3,
                                          verbose=1)
            model.compile(optimizer=Adam(learning_rate_base),
                          loss={
                              'yolo_loss': lambda y_true, y_pred: y_pred
예제 #3
0
def main():
    # 标签的位置
    annotation_path = '2020_train_all.txt'
    # 获取classes和anchor的位置
    classes_path = 'model_data/our_classes.txt'
    anchors_path = 'model_data/yolo4_anchors.txt'
    #------------------------------------------------------#
    #   权值文件请看README,百度网盘下载
    #   训练自己的数据集时提示维度不匹配正常
    #   预测的东西都不一样了自然维度不匹配
    #------------------------------------------------------#
    weights_path = 'model_data/last9.h5'
    # 获得classes和anchor
    class_names = get_classes(classes_path)
    anchors = get_anchors(anchors_path)
    # 一共有多少类
    num_classes = len(class_names)
    num_anchors = len(anchors)
    # 训练后的模型保存的位置
    log_dir = 'logs/'
    # 输入的shape大小
    # 显存比较小可以使用416x416
    # 现存比较大可以使用608x608
    input_shape = (608, 608)
    mosaic = True
    Cosine_scheduler = False
    label_smoothing = 0

    # 清除session
    K.clear_session()

    # 输入的图像为
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape

    # 创建yolo模型
    print('Create YOLOv4 model with {} anchors and {} classes.'.format(
        num_anchors, num_classes))
    model_body = yolo_body(image_input, num_anchors // 3, num_classes)

    # 载入预训练权重
    print('Load weights {}.'.format(weights_path))
    model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)

    # y_true为13,13,3,85
    # 26,26,3,85
    # 52,52,3,85
    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    # 输入为*model_body.input, *y_true
    # 输出为model_loss
    loss_input = [*model_body.output, *y_true]
    model_loss = Lambda(yolo_loss,
                        output_shape=(1, ),
                        name='yolo_loss',
                        arguments={
                            'anchors': anchors,
                            'num_classes': num_classes,
                            'ignore_thresh': 0.5,
                            'label_smoothing': label_smoothing
                        })(loss_input)

    model = Model([model_body.input, *y_true], model_loss)

    # 训练参数设置
    logging = TensorBoard(log_dir=log_dir)
    checkpoint = ModelCheckpoint(
        log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
        monitor='val_loss',
        save_weights_only=True,
        save_best_only=False,
        period=1)
    early_stopping = EarlyStopping(monitor='val_loss',
                                   min_delta=0,
                                   patience=6,
                                   verbose=1)

    # 0.1用于验证,0.9用于训练
    val_split = 0.1
    with open(annotation_path) as f:
        lines = f.readlines()
    np.random.seed(10101)
    np.random.shuffle(lines)
    np.random.seed(None)
    num_val = int(len(lines) * val_split)
    num_train = len(lines) - num_val

    #------------------------------------------------------#
    #   主干特征提取网络特征通用,冻结训练可以加快训练速度
    #   也可以在训练初期防止权值被破坏。
    #   Init_Epoch为起始世代
    #   Freeze_Epoch为冻结训练的世代
    #   Epoch总训练世代
    #   提示OOM或者显存不足请调小Batch_size
    #------------------------------------------------------#
    freeze_layers = 249
    for i in range(freeze_layers):
        model_body.layers[i].trainable = False
    print('Freeze the first {} layers of total {} layers.'.format(
        freeze_layers, len(model_body.layers)))

    # 调整非主干模型first
    if True:
        Init_epoch = 0
        Freeze_epoch = 50
        # batch_size大小,每次喂入多少数据
        batch_size = 8
        # 最大学习率
        learning_rate_base = 1e-3
        if Cosine_scheduler:
            # 预热期
            warmup_epoch = int((Freeze_epoch - Init_epoch) * 0.2)
            # 总共的步长
            total_steps = int(
                (Freeze_epoch - Init_epoch) * num_train / batch_size)
            # 预热步长
            warmup_steps = int(warmup_epoch * num_train / batch_size)
            # 学习率
            reduce_lr = WarmUpCosineDecayScheduler(
                learning_rate_base=learning_rate_base,
                total_steps=total_steps,
                warmup_learning_rate=1e-4,
                warmup_steps=warmup_steps,
                hold_base_rate_steps=num_train,
                min_learn_rate=1e-6)
            model.compile(optimizer=Adam(),
                          loss={
                              'yolo_loss': lambda y_true, y_pred: y_pred
                          })
        else:
            reduce_lr = ReduceLROnPlateau(monitor='val_loss',
                                          factor=0.5,
                                          patience=2,
                                          verbose=1)
            model.compile(optimizer=Adam(learning_rate_base),
                          loss={
                              'yolo_loss': lambda y_true, y_pred: y_pred
                          })

        print('Train on {} samples, val on {} samples, with batch size {}.'.
              format(num_train, num_val, batch_size))
        model.fit_generator(
            data_generator(lines[:num_train],
                           batch_size,
                           input_shape,
                           anchors,
                           num_classes,
                           mosaic=mosaic),
            steps_per_epoch=max(1, num_train // batch_size),
            validation_data=data_generator(lines[num_train:],
                                           batch_size,
                                           input_shape,
                                           anchors,
                                           num_classes,
                                           mosaic=False),
            validation_steps=max(1, num_val // batch_size),
            epochs=Freeze_epoch,
            initial_epoch=Init_epoch,
            callbacks=[logging, checkpoint, reduce_lr, early_stopping])
        model.save_weights(log_dir + 'trained_weights_stage_1.h5')

    for i in range(freeze_layers):
        model_body.layers[i].trainable = True

    # 解冻后训练
    if True:
        Freeze_epoch = 50
        Epoch = 100
        # batch_size大小,每次喂入多少数据
        batch_size = 2

        # 最大学习率
        learning_rate_base = 1e-4
        if Cosine_scheduler:
            # 预热期
            warmup_epoch = int((Epoch - Freeze_epoch) * 0.2)
            # 总共的步长
            total_steps = int((Epoch - Freeze_epoch) * num_train / batch_size)
            # 预热步长
            warmup_steps = int(warmup_epoch * num_train / batch_size)
            # 学习率
            reduce_lr = WarmUpCosineDecayScheduler(
                learning_rate_base=learning_rate_base,
                total_steps=total_steps,
                warmup_learning_rate=1e-5,
                warmup_steps=warmup_steps,
                hold_base_rate_steps=num_train // 2,
                min_learn_rate=1e-6)
            model.compile(optimizer=Adam(),
                          loss={
                              'yolo_loss': lambda y_true, y_pred: y_pred
                          })
        else:
            reduce_lr = ReduceLROnPlateau(monitor='val_loss',
                                          factor=0.5,
                                          patience=2,
                                          verbose=1)
            model.compile(optimizer=Adam(learning_rate_base),
                          loss={
                              'yolo_loss': lambda y_true, y_pred: y_pred
                          })

        print('Train on {} samples, val on {} samples, with batch size {}.'.
              format(num_train, num_val, batch_size))
        model.fit_generator(
            data_generator(lines[:num_train],
                           batch_size,
                           input_shape,
                           anchors,
                           num_classes,
                           mosaic=mosaic),
            steps_per_epoch=max(1, num_train // batch_size),
            validation_data=data_generator(lines[num_train:],
                                           batch_size,
                                           input_shape,
                                           anchors,
                                           num_classes,
                                           mosaic=False),
            validation_steps=max(1, num_val // batch_size),
            epochs=Epoch,
            initial_epoch=Freeze_epoch,
            callbacks=[logging, checkpoint, reduce_lr, early_stopping])
        model.save_weights(log_dir + 'last1.h5')
예제 #4
0
파일: __init__.py 프로젝트: ZuyongWu/yolov4
    def trainModel(self, mosaic=True, cosine_scheduler=True, label_smoothing=0.1):
        """
        """
        anchors = get_anchors(self.anchors_path)
        num_classes = len(self.classes)
        num_anchors = len(anchors)

        K.clear_session()

        image_input = Input(shape=(None, None, 3))
        h, w = self.input_shape

        print('Create YOLOv4 model with {} anchors and {} classes.'.format(num_anchors, num_classes))
        # model_body = Model(image_input, [P5_output, P4_output, P3_output])
        model_body = yolo_body(image_input, num_anchors // 3, num_classes)

        print('Load weights {}.'.format(self.pretrain_model))
        model_body.load_weights(self.pretrain_model, by_name=True, skip_mismatch=True)

        # y_true = [Input(shape=(h//32,w//32,3,cls+5), Input(shape=(h//16,w//16,3,cls+5), Input(shape=(h//8,w//8,3,cls+5)]
        y_true = [Input(shape=(h // {0: 32, 1: 16, 2: 8}[i], w // {0: 32, 1: 16, 2: 8}[i], num_anchors // 3, num_classes + 5))
                  for i in range(3)]

        # model_body.output = [P5_output, P4_output, P3_output]
        loss_input = [*model_body.output, *y_true]
        model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
                            arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5,
                                       'label_smoothing': label_smoothing})(loss_input)

        model = Model([model_body.input, *y_true], model_loss)
        # plot_model(model, to_file="yolov4_loss_model.png", show_shapes=True, show_layer_names=True)

        logging = TensorBoard(log_dir=self.log_dir)
        checkpoint = ModelCheckpoint(self.log_dir + 'epoch{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
                                     monitor='val_loss', save_weights_only=True, save_best_only=False, period=1)
        early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1)

        val_split = 0.1
        with open(self.annotation_path) as f:
            lines = f.readlines()
        np.random.seed(10101)
        np.random.shuffle(lines)
        np.random.seed(None)
        num_val = int(len(lines) * val_split)
        num_train = len(lines) - num_val

        # ------------------------------------------------------#
        #   backbone extract general feature in network
        #   freeze some head layers can speed up training, and prevent weights from influence in early epoch
        # ------------------------------------------------------#
        freeze_layers = 249
        for i in range(freeze_layers):
            model_body.layers[i].trainable = False
        print('Freeze the first {} layers of total {} layers.'.format(freeze_layers, len(model_body.layers)))

        init_epoch = 0
        freeze_epoch = self.epochs // 2
        batch_size = self.batch_size * 2
        learning_rate_base = 1e-3

        if cosine_scheduler:
            warm_up_epoch = int((freeze_epoch - init_epoch) * 0.2)
            total_steps = int((freeze_epoch - init_epoch) * num_train / batch_size)
            warm_up_steps = int(warm_up_epoch * num_train / batch_size)

            reduce_lr = WarmUpCosineDecayScheduler(learning_rate_base=learning_rate_base,
                                                   total_steps=total_steps,
                                                   warmup_learning_rate=1e-4,
                                                   warmup_steps=warm_up_steps,
                                                   hold_base_rate_steps=num_train,
                                                   min_learn_rate=1e-6)
            model.compile(optimizer=Adam(), loss=dummy_loss)
        else:
            reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=2, verbose=1, min_lr=1e-6)
            model.compile(optimizer=Adam(learning_rate_base), loss=dummy_loss)

        print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))

        model.fit_generator(
            data_generator(lines[:num_train], batch_size, self.input_shape, anchors, num_classes, mosaic=mosaic),
            steps_per_epoch=max(1, num_train // batch_size),
            validation_data=data_generator(lines[num_train:], batch_size, self.input_shape, anchors, num_classes, mosaic=False),
            validation_steps=max(1, num_val // batch_size),
            epochs=freeze_epoch,
            initial_epoch=init_epoch,
            callbacks=[logging, checkpoint, reduce_lr, early_stopping])

        model.save_weights(self.log_dir + 'trained_weights_stage_1.h5')

        for i in range(freeze_layers):
            model_body.layers[i].trainable = True

        print("\n\nStarting Training all Layers....\n\n")

        batch_size = self.batch_size

        learning_rate_base = 1e-4
        if cosine_scheduler:
            warm_up_epoch = int((self.epochs - freeze_epoch) * 0.2)
            total_steps = int((self.epochs - freeze_epoch) * num_train / batch_size)
            warm_up_steps = int(warm_up_epoch * num_train / batch_size)
            reduce_lr = WarmUpCosineDecayScheduler(learning_rate_base=learning_rate_base,
                                                   total_steps=total_steps,
                                                   warmup_learning_rate=1e-5,
                                                   warmup_steps=warm_up_steps,
                                                   hold_base_rate_steps=num_train // 2,
                                                   min_learn_rate=1e-6)
            model.compile(optimizer=Adam(), loss=dummy_loss)
        else:
            reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=2, verbose=1, min_lr=1e-6)
            model.compile(optimizer=Adam(learning_rate_base), loss=dummy_loss)

        print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))

        model.fit_generator(
            data_generator(lines[:num_train], batch_size, self.input_shape, anchors, num_classes, mosaic=mosaic),
            steps_per_epoch=max(1, num_train // batch_size),
            validation_data=data_generator(lines[num_train:], batch_size, self.input_shape, anchors, num_classes, mosaic=False),
            validation_steps=max(1, num_val // batch_size),
            epochs=self.epochs,
            initial_epoch=freeze_epoch,
            callbacks=[logging, checkpoint, reduce_lr, early_stopping])

        model.save_weights(self.log_dir + 'last1.h5')