def get_FPS(self, image, test_interval):
        image_shape = np.array(np.shape(image)[0:2])
        #---------------------------------------------------------#
        #   在这里将图像转换成RGB图像,防止灰度图在预测时报错。
        #   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
        #---------------------------------------------------------#
        image       = cvtColor(image)
        #---------------------------------------------------------#
        #   给图像增加灰条,实现不失真的resize
        #   也可以直接resize进行识别
        #---------------------------------------------------------#
        image_data = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image)
        #---------------------------------------------------------#
        #   添加上batch_size维度,图片预处理,归一化。
        #---------------------------------------------------------#
        image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)

        with torch.no_grad():
            images = torch.from_numpy(image_data)
            if self.cuda:
                images = images.cuda()
            #---------------------------------------------------------#
            #   传入网络当中进行预测
            #---------------------------------------------------------#
            _, regression, classification, anchors = self.net(images)
            
            #-----------------------------------------------------------#
            #   将预测结果进行解码
            #-----------------------------------------------------------#
            outputs     = decodebox(regression, anchors, self.input_shape)
            results     = non_max_suppression(torch.cat([outputs, classification], axis=-1), self.input_shape, 
                                    image_shape, self.letterbox_image, conf_thres = self.confidence, nms_thres = self.nms_iou)

        t1 = time.time()
        for _ in range(test_interval):
            with torch.no_grad():
                #---------------------------------------------------------#
                #   传入网络当中进行预测
                #---------------------------------------------------------#
                _, regression, classification, anchors = self.net(images)
                
                #-----------------------------------------------------------#
                #   将预测结果进行解码
                #-----------------------------------------------------------#
                outputs     = decodebox(regression, anchors, self.input_shape)
                results     = non_max_suppression(torch.cat([outputs, classification], axis=-1), self.input_shape, 
                                        image_shape, self.letterbox_image, conf_thres = self.confidence, nms_thres = self.nms_iou)

        t2 = time.time()
        tact_time = (t2 - t1) / test_interval
        return tact_time
    def get_map_txt(self, image_id, image, class_names, map_out_path):
        f = open(os.path.join(map_out_path, "detection-results/"+image_id+".txt"),"w") 
        image_shape = np.array(np.shape(image)[0:2])
        #---------------------------------------------------------#
        #   在这里将图像转换成RGB图像,防止灰度图在预测时报错。
        #   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
        #---------------------------------------------------------#
        image       = cvtColor(image)
        #---------------------------------------------------------#
        #   给图像增加灰条,实现不失真的resize
        #   也可以直接resize进行识别
        #---------------------------------------------------------#
        image_data = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image)
        #---------------------------------------------------------#
        #   添加上batch_size维度,图片预处理,归一化。
        #---------------------------------------------------------#
        image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)

        with torch.no_grad():
            images = torch.from_numpy(image_data)
            if self.cuda:
                images = images.cuda()
            #---------------------------------------------------------#
            #   传入网络当中进行预测
            #---------------------------------------------------------#
            _, regression, classification, anchors = self.net(images)
            
            #-----------------------------------------------------------#
            #   将预测结果进行解码
            #-----------------------------------------------------------#
            outputs     = decodebox(regression, anchors, self.input_shape)
            results     = non_max_suppression(torch.cat([outputs, classification], axis=-1), self.input_shape, 
                                    image_shape, self.letterbox_image, conf_thres = self.confidence, nms_thres = self.nms_iou)
               
            if results[0] is None: 
                return 

            top_label   = np.array(results[0][:, 5], dtype = 'int32')
            top_conf    = results[0][:, 4]
            top_boxes   = results[0][:, :4]

        for i, c in list(enumerate(top_label)):
            predicted_class = self.class_names[int(c)]
            box             = top_boxes[i]
            score           = str(top_conf[i])

            top, left, bottom, right = box
            if predicted_class not in class_names:
                continue

            f.write("%s %s %s %s %s %s\n" % (predicted_class, score[:6], str(int(left)), str(int(top)), str(int(right)),str(int(bottom))))

        f.close()
        return 
예제 #3
0
    def detect_image(self, image, crop=False):
        image_shape = np.array(np.shape(image)[0:2])
        #---------------------------------------------------------#
        #   在这里将图像转换成RGB图像,防止灰度图在预测时报错。
        #   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
        #---------------------------------------------------------#
        image = cvtColor(image)
        #---------------------------------------------------------#
        #   给图像增加灰条,实现不失真的resize
        #   也可以直接resize进行识别
        #---------------------------------------------------------#
        image_data = resize_image(image,
                                  (self.input_shape[1], self.input_shape[0]),
                                  self.letterbox_image)
        #---------------------------------------------------------#
        #   添加上batch_size维度,图片预处理,归一化。
        #---------------------------------------------------------#
        image_data = np.expand_dims(
            np.transpose(
                preprocess_input(np.array(image_data, dtype='float32')),
                (2, 0, 1)), 0)

        with torch.no_grad():
            images = torch.from_numpy(image_data)
            if self.cuda:
                images = images.cuda()
            #---------------------------------------------------------#
            #   传入网络当中进行预测
            #---------------------------------------------------------#
            _, regression, classification, anchors = self.net(images)

            #-----------------------------------------------------------#
            #   将预测结果进行解码
            #-----------------------------------------------------------#
            outputs = decodebox(regression, anchors, self.input_shape)
            results = non_max_suppression(torch.cat([outputs, classification],
                                                    axis=-1),
                                          self.input_shape,
                                          image_shape,
                                          self.letterbox_image,
                                          conf_thres=self.confidence,
                                          nms_thres=self.nms_iou)

            if results[0] is None:
                return image

            top_label = np.array(results[0][:, 5], dtype='int32')
            top_conf = results[0][:, 4]
            top_boxes = results[0][:, :4]

        #---------------------------------------------------------#
        #   设置字体与边框厚度
        #---------------------------------------------------------#
        font = ImageFont.truetype(font='model_data/simhei.ttf',
                                  size=np.floor(3e-2 * image.size[1] +
                                                0.5).astype('int32'))
        thickness = int(
            max((image.size[0] + image.size[1]) // np.mean(self.input_shape),
                1))

        #---------------------------------------------------------#
        #   是否进行目标的裁剪
        #---------------------------------------------------------#
        if crop:
            for i, c in list(enumerate(top_label)):
                top, left, bottom, right = top_boxes[i]
                top = max(0, np.floor(top).astype('int32'))
                left = max(0, np.floor(left).astype('int32'))
                bottom = min(image.size[1], np.floor(bottom).astype('int32'))
                right = min(image.size[0], np.floor(right).astype('int32'))

                dir_save_path = "img_crop"
                if not os.path.exists(dir_save_path):
                    os.makedirs(dir_save_path)
                crop_image = image.crop([left, top, right, bottom])
                crop_image.save(os.path.join(dir_save_path,
                                             "crop_" + str(i) + ".png"),
                                quality=95,
                                subsampling=0)
                print("save crop_" + str(i) + ".png to " + dir_save_path)
        #---------------------------------------------------------#
        #   图像绘制
        #---------------------------------------------------------#
        for i, c in list(enumerate(top_label)):
            predicted_class = self.class_names[int(c)]
            box = top_boxes[i]
            score = top_conf[i]

            top, left, bottom, right = box

            top = max(0, np.floor(top).astype('int32'))
            left = max(0, np.floor(left).astype('int32'))
            bottom = min(image.size[1], np.floor(bottom).astype('int32'))
            right = min(image.size[0], np.floor(right).astype('int32'))

            label = '{} {:.2f}'.format(predicted_class, score)
            draw = ImageDraw.Draw(image)
            label_size = draw.textsize(label, font)
            label = label.encode('utf-8')
            print(label, top, left, bottom, right)

            if top - label_size[1] >= 0:
                text_origin = np.array([left, top - label_size[1]])
            else:
                text_origin = np.array([left, top + 1])

            for i in range(thickness):
                draw.rectangle([left + i, top + i, right - i, bottom - i],
                               outline=self.colors[c])
            draw.rectangle(
                [tuple(text_origin),
                 tuple(text_origin + label_size)],
                fill=self.colors[c])
            draw.text(text_origin,
                      str(label, 'UTF-8'),
                      fill=(0, 0, 0),
                      font=font)
            del draw

        return image