def get_FPS(self, image, test_interval): image_shape = np.array(np.shape(image)[0:2]) #---------------------------------------------------------# # 在这里将图像转换成RGB图像,防止灰度图在预测时报错。 # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB #---------------------------------------------------------# image = cvtColor(image) #---------------------------------------------------------# # 给图像增加灰条,实现不失真的resize # 也可以直接resize进行识别 #---------------------------------------------------------# image_data = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image) #---------------------------------------------------------# # 添加上batch_size维度,图片预处理,归一化。 #---------------------------------------------------------# image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0) with torch.no_grad(): images = torch.from_numpy(image_data) if self.cuda: images = images.cuda() #---------------------------------------------------------# # 传入网络当中进行预测 #---------------------------------------------------------# _, regression, classification, anchors = self.net(images) #-----------------------------------------------------------# # 将预测结果进行解码 #-----------------------------------------------------------# outputs = decodebox(regression, anchors, self.input_shape) results = non_max_suppression(torch.cat([outputs, classification], axis=-1), self.input_shape, image_shape, self.letterbox_image, conf_thres = self.confidence, nms_thres = self.nms_iou) t1 = time.time() for _ in range(test_interval): with torch.no_grad(): #---------------------------------------------------------# # 传入网络当中进行预测 #---------------------------------------------------------# _, regression, classification, anchors = self.net(images) #-----------------------------------------------------------# # 将预测结果进行解码 #-----------------------------------------------------------# outputs = decodebox(regression, anchors, self.input_shape) results = non_max_suppression(torch.cat([outputs, classification], axis=-1), self.input_shape, image_shape, self.letterbox_image, conf_thres = self.confidence, nms_thres = self.nms_iou) t2 = time.time() tact_time = (t2 - t1) / test_interval return tact_time
def get_map_txt(self, image_id, image, class_names, map_out_path): f = open(os.path.join(map_out_path, "detection-results/"+image_id+".txt"),"w") image_shape = np.array(np.shape(image)[0:2]) #---------------------------------------------------------# # 在这里将图像转换成RGB图像,防止灰度图在预测时报错。 # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB #---------------------------------------------------------# image = cvtColor(image) #---------------------------------------------------------# # 给图像增加灰条,实现不失真的resize # 也可以直接resize进行识别 #---------------------------------------------------------# image_data = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image) #---------------------------------------------------------# # 添加上batch_size维度,图片预处理,归一化。 #---------------------------------------------------------# image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0) with torch.no_grad(): images = torch.from_numpy(image_data) if self.cuda: images = images.cuda() #---------------------------------------------------------# # 传入网络当中进行预测 #---------------------------------------------------------# _, regression, classification, anchors = self.net(images) #-----------------------------------------------------------# # 将预测结果进行解码 #-----------------------------------------------------------# outputs = decodebox(regression, anchors, self.input_shape) results = non_max_suppression(torch.cat([outputs, classification], axis=-1), self.input_shape, image_shape, self.letterbox_image, conf_thres = self.confidence, nms_thres = self.nms_iou) if results[0] is None: return top_label = np.array(results[0][:, 5], dtype = 'int32') top_conf = results[0][:, 4] top_boxes = results[0][:, :4] for i, c in list(enumerate(top_label)): predicted_class = self.class_names[int(c)] box = top_boxes[i] score = str(top_conf[i]) top, left, bottom, right = box if predicted_class not in class_names: continue f.write("%s %s %s %s %s %s\n" % (predicted_class, score[:6], str(int(left)), str(int(top)), str(int(right)),str(int(bottom)))) f.close() return
def detect_image(self, image, crop=False): image_shape = np.array(np.shape(image)[0:2]) #---------------------------------------------------------# # 在这里将图像转换成RGB图像,防止灰度图在预测时报错。 # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB #---------------------------------------------------------# image = cvtColor(image) #---------------------------------------------------------# # 给图像增加灰条,实现不失真的resize # 也可以直接resize进行识别 #---------------------------------------------------------# image_data = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image) #---------------------------------------------------------# # 添加上batch_size维度,图片预处理,归一化。 #---------------------------------------------------------# image_data = np.expand_dims( np.transpose( preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0) with torch.no_grad(): images = torch.from_numpy(image_data) if self.cuda: images = images.cuda() #---------------------------------------------------------# # 传入网络当中进行预测 #---------------------------------------------------------# _, regression, classification, anchors = self.net(images) #-----------------------------------------------------------# # 将预测结果进行解码 #-----------------------------------------------------------# outputs = decodebox(regression, anchors, self.input_shape) results = non_max_suppression(torch.cat([outputs, classification], axis=-1), self.input_shape, image_shape, self.letterbox_image, conf_thres=self.confidence, nms_thres=self.nms_iou) if results[0] is None: return image top_label = np.array(results[0][:, 5], dtype='int32') top_conf = results[0][:, 4] top_boxes = results[0][:, :4] #---------------------------------------------------------# # 设置字体与边框厚度 #---------------------------------------------------------# font = ImageFont.truetype(font='model_data/simhei.ttf', size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32')) thickness = int( max((image.size[0] + image.size[1]) // np.mean(self.input_shape), 1)) #---------------------------------------------------------# # 是否进行目标的裁剪 #---------------------------------------------------------# if crop: for i, c in list(enumerate(top_label)): top, left, bottom, right = top_boxes[i] top = max(0, np.floor(top).astype('int32')) left = max(0, np.floor(left).astype('int32')) bottom = min(image.size[1], np.floor(bottom).astype('int32')) right = min(image.size[0], np.floor(right).astype('int32')) dir_save_path = "img_crop" if not os.path.exists(dir_save_path): os.makedirs(dir_save_path) crop_image = image.crop([left, top, right, bottom]) crop_image.save(os.path.join(dir_save_path, "crop_" + str(i) + ".png"), quality=95, subsampling=0) print("save crop_" + str(i) + ".png to " + dir_save_path) #---------------------------------------------------------# # 图像绘制 #---------------------------------------------------------# for i, c in list(enumerate(top_label)): predicted_class = self.class_names[int(c)] box = top_boxes[i] score = top_conf[i] top, left, bottom, right = box top = max(0, np.floor(top).astype('int32')) left = max(0, np.floor(left).astype('int32')) bottom = min(image.size[1], np.floor(bottom).astype('int32')) right = min(image.size[0], np.floor(right).astype('int32')) label = '{} {:.2f}'.format(predicted_class, score) draw = ImageDraw.Draw(image) label_size = draw.textsize(label, font) label = label.encode('utf-8') print(label, top, left, bottom, right) if top - label_size[1] >= 0: text_origin = np.array([left, top - label_size[1]]) else: text_origin = np.array([left, top + 1]) for i in range(thickness): draw.rectangle([left + i, top + i, right - i, bottom - i], outline=self.colors[c]) draw.rectangle( [tuple(text_origin), tuple(text_origin + label_size)], fill=self.colors[c]) draw.text(text_origin, str(label, 'UTF-8'), fill=(0, 0, 0), font=font) del draw return image