def cal_metrics(self): self.metrics['psnr'] = util.calculate_psnr(self.out_dict['dx'], self.out_dict['y_gt']) self.metrics['ssim'] = util.calculate_ssim(self.out_dict['dx'], self.out_dict['y_gt']) return self.metrics['psnr'], self.metrics['ssim']
def main(json_path='options/val_tsms.json'): parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, default=json_path, help='Path to option JSON file.') opt = option.parse(parser.parse_args().opt, is_train=True) logger_name = 'val_msmd_patch' utils_logger.logger_info( logger_name, os.path.join(opt['path']['log'], logger_name + '.log')) logger = logging.getLogger(logger_name) for phase, dataset_opt in opt['datasets'].items(): test_set = define_Dataset(phase, dataset_opt) test_loader = DataLoader(test_set, batch_size=1, shuffle=False, num_workers=1, drop_last=False, pin_memory=True) model = define_Model(opt, stage2=True) model.load() avg_psnr = 0.0 idx = 0 for test_data in test_loader: idx += 1 image_name = os.path.basename(test_data['L_path'][0]) image_name = image_name + '.png' save_img_path = os.path.join(opt['path']['images'], image_name) model.feed_data(test_data) model.test() visuals = model.current_visuals() E_img = util.tensor2uint(visuals['E']) #print(E_img.shape) H_img = util.tensor2uint(visuals['H']) # ----------------------- # save estimated image E # ----------------------- util.imsave(E_img, save_img_path) # ----------------------- # calculate PSNR # ----------------------- current_psnr = util.calculate_psnr(E_img, H_img, border=4) logger.info('{:->4d}--> {:>10s} | {:<4.2f}dB'.format( idx, image_name, current_psnr)) avg_psnr += current_psnr avg_psnr = avg_psnr / idx # testing log message_te = '\tVal_PSNR_avg: {:<.2f}dB'.format(avg_psnr) logger.info(message_te)
def comp_upto_shift(I1, I2, maxshift=5, border=15, min_interval=0.25): ''' Args: I1: estimated image I2: reference maxshift: assumed maxshift border: shave border to calculate PSNR and SSIM Returns: PSNR and SSIM ''' I2 = I2[border:-border,border:-border] I1 = I1[border-maxshift:-border+maxshift,border-maxshift:-border+maxshift] N1, N2 = I2.shape[:2] gx, gy = np.arange(-maxshift, N2+maxshift, 1.0), np.arange(-maxshift, N1+maxshift, 1.0) shifts = np.linspace(-maxshift, maxshift, int(2*maxshift/min_interval+1)) gx0, gy0 = np.arange(0, N2, 1.0), np.arange(0, N1, 1.0) ssdem=np.zeros([len(shifts),len(shifts)]) for i in range(len(shifts)): for j in range(len(shifts)): gxn = gx0+shifts[i] gvn = gy0+shifts[j] if I1.ndim == 2: tI1 = interp2d(gx, gy, I1)(gxn, gvn) elif I1.ndim == 3: tI1 = np.zeros(I2.shape) for k in range(I1.shape[-1]): tI1[:,:,k] = interp2d(gx, gy, I1[:,:,k])(gxn, gvn) ssdem[i,j]=np.sum((tI1-I2)**2) #util.surf(ssdem) idxs = np.unravel_index(np.argmin(ssdem), ssdem.shape) print('shifted pixel is {}x{}'.format(shifts[idxs[0]], shifts[idxs[1]])) gxn = gx0+shifts[idxs[0]] gvn = gy0+shifts[idxs[1]] if I1.ndim == 2: tI1 = interp2d(gx, gy, I1)(gxn, gvn) elif I1.ndim == 3: tI1 = np.zeros(I2.shape) for k in range(I1.shape[-1]): tI1[:,:,k] = interp2d(gx, gy, I1[:,:,k])(gxn, gvn) psnr = util.calculate_psnr(tI1, I2, border=0) ssim = util.calculate_ssim(tI1, I2, border=0) return psnr, ssim
# load test image x = util.imread_uint(test_path, n_channels=n_channels) orig_im = x.squeeze() x = util.uint2single(x) np.random.seed(seed=0) # for reproducibility y = x + np.random.normal(0, sigma/255., x.shape) # add gaussian noise y = util.single2tensor4(y) y = y.to(device) # denoise the image to compare PSNR before and after adaptation with torch.no_grad(): x_ = model(y) # compute PSNR denoised_im = util.tensor2uint(x_) prev_psnr = util.calculate_psnr(denoised_im, orig_im, border=0) # external adaptation # open train image x_train = util.imread_uint(train_path, n_channels=n_channels) x_train = util.uint2single(x_train) x_train_comp = util.single2tensor4(x_train) x_train_comp = x_train_comp.to(device) model.train() optimizer = optim.Adam(model.parameters(), lr=lr) # training loop start_time = time.time() for epoch in range(epochs):
def main(json_path='options/train_msrresnet_psnr.json'): ''' # ---------------------------------------- # Step--1 (prepare opt) # ---------------------------------------- ''' parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, default=json_path, help='Path to option JSON file.') opt = option.parse(parser.parse_args().opt, is_train=True) util.mkdirs( (path for key, path in opt['path'].items() if 'pretrained' not in key)) # ---------------------------------------- # update opt # ---------------------------------------- # -->-->-->-->-->-->-->-->-->-->-->-->-->- init_iter, init_path_G = option.find_last_checkpoint(opt['path']['models'], net_type='G') opt['path']['pretrained_netG'] = init_path_G current_step = init_iter border = opt['scale'] # --<--<--<--<--<--<--<--<--<--<--<--<--<- # ---------------------------------------- # save opt to a '../option.json' file # ---------------------------------------- option.save(opt) # ---------------------------------------- # return None for missing key # ---------------------------------------- opt = option.dict_to_nonedict(opt) # ---------------------------------------- # configure logger # ---------------------------------------- logger_name = 'train' utils_logger.logger_info( logger_name, os.path.join(opt['path']['log'], logger_name + '.log')) logger = logging.getLogger(logger_name) logger.info(option.dict2str(opt)) # ---------------------------------------- # seed # ---------------------------------------- seed = opt['train']['manual_seed'] if seed is None: seed = random.randint(1, 10000) logger.info('Random seed: {}'.format(seed)) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) ''' # ---------------------------------------- # Step--2 (creat dataloader) # ---------------------------------------- ''' # ---------------------------------------- # 1) create_dataset # 2) creat_dataloader for train and test # ---------------------------------------- for phase, dataset_opt in opt['datasets'].items(): if phase == 'train': train_set = define_Dataset(dataset_opt) train_size = int( math.ceil( len(train_set) / dataset_opt['dataloader_batch_size'])) logger.info('Number of train images: {:,d}, iters: {:,d}'.format( len(train_set), train_size)) train_loader = DataLoader( train_set, batch_size=dataset_opt['dataloader_batch_size'], shuffle=dataset_opt['dataloader_shuffle'], num_workers=dataset_opt['dataloader_num_workers'], drop_last=True, pin_memory=True) elif phase == 'test': test_set = define_Dataset(dataset_opt) test_loader = DataLoader(test_set, batch_size=1, shuffle=False, num_workers=1, drop_last=False, pin_memory=True) else: raise NotImplementedError("Phase [%s] is not recognized." % phase) ''' # ---------------------------------------- # Step--3 (initialize model) # ---------------------------------------- ''' model = define_Model(opt) model.init_train() logger.info(model.info_network()) logger.info(model.info_params()) ''' # ---------------------------------------- # Step--4 (main training) # ---------------------------------------- ''' for epoch in range(100): # keep running for i, train_data in enumerate(train_loader): current_step += 1 # ------------------------------- # 1) update learning rate # ------------------------------- model.update_learning_rate(current_step) # ------------------------------- # 2) feed patch pairs # ------------------------------- model.feed_data(train_data) # ------------------------------- # 3) optimize parameters # ------------------------------- model.optimize_parameters(current_step) # ------------------------------- # 4) training information # ------------------------------- if current_step % opt['train']['checkpoint_print'] == 0: logs = model.current_log() # such as loss message = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}> '.format( epoch, current_step, model.current_learning_rate()) for k, v in logs.items(): # merge log information into message message += '{:s}: {:.3e} '.format(k, v) logger.info(message) # ------------------------------- # 5) save model # ------------------------------- if current_step % opt['train']['checkpoint_save'] == 0: logger.info('Saving the model.') model.save(current_step) # ------------------------------- # 6) testing # ------------------------------- if current_step % opt['train']['checkpoint_test'] == 0: avg_psnr = 0.0 idx = 0 for test_data in test_loader: idx += 1 image_name_ext = os.path.basename(test_data['L_path'][0]) img_name, ext = os.path.splitext(image_name_ext) img_dir = os.path.join(opt['path']['images'], img_name) util.mkdir(img_dir) model.feed_data(test_data) model.test() visuals = model.current_visuals() E_img = util.tensor2uint(visuals['E']) H_img = util.tensor2uint(visuals['H']) # ----------------------- # save estimated image E # ----------------------- save_img_path = os.path.join( img_dir, '{:s}_{:d}.png'.format(img_name, current_step)) util.imsave(E_img, save_img_path) # ----------------------- # calculate PSNR # ----------------------- current_psnr = util.calculate_psnr(E_img, H_img, border=border) logger.info('{:->4d}--> {:>10s} | {:<4.2f}dB'.format( idx, image_name_ext, current_psnr)) avg_psnr += current_psnr avg_psnr = avg_psnr / idx # testing log logger.info( '<epoch:{:3d}, iter:{:8,d}, Average PSNR : {:<.2f}dB\n'. format(epoch, current_step, avg_psnr)) logger.info('Saving the final model.') model.save('latest') logger.info('End of training.')
def main(): # ---------------------------------------- # Preparation # ---------------------------------------- noise_level_img = 0 / 255.0 # set AWGN noise level for LR image, default: 0 noise_level_model = noise_level_img # set noise level of model, default: 0 model_name = 'ircnn_color' # set denoiser, 'drunet_color' | 'ircnn_color' testset_name = 'Set18' # set testing set, 'set18' | 'set24' x8 = True # set PGSE to boost performance, default: True iter_num = 40 # set number of iterations, default: 40 for demosaicing modelSigma1 = 49 # set sigma_1, default: 49 modelSigma2 = max(0.6, noise_level_model * 255.) # set sigma_2, default matlab_init = True show_img = False # default: False save_L = True # save LR image save_E = True # save estimated image save_LEH = False # save zoomed LR, E and H images border = 10 # default 10 for demosaicing task_current = 'dm' # 'dm' for demosaicing n_channels = 3 # fixed model_zoo = 'model_zoo' # fixed testsets = 'testsets' # fixed results = 'results' # fixed result_name = testset_name + '_' + task_current + '_' + model_name model_path = os.path.join(model_zoo, model_name + '.pth') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') torch.cuda.empty_cache() # ---------------------------------------- # L_path, E_path, H_path # ---------------------------------------- L_path = os.path.join(testsets, testset_name) # L_path, for Low-quality images E_path = os.path.join(results, result_name) # E_path, for Estimated images util.mkdir(E_path) logger_name = result_name utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name + '.log')) logger = logging.getLogger(logger_name) # ---------------------------------------- # load model # ---------------------------------------- if 'drunet' in model_name: from models.network_unet import UNetRes as net model = net(in_nc=n_channels + 1, out_nc=n_channels, nc=[64, 128, 256, 512], nb=4, act_mode='R', downsample_mode="strideconv", upsample_mode="convtranspose") model.load_state_dict(torch.load(model_path), strict=True) model.eval() for _, v in model.named_parameters(): v.requires_grad = False model = model.to(device) elif 'ircnn' in model_name: from models.network_dncnn import IRCNN as net model = net(in_nc=n_channels, out_nc=n_channels, nc=64) model25 = torch.load(model_path) former_idx = 0 logger.info('model_name:{}, image sigma:{:.3f}, model sigma:{:.3f}'.format( model_name, noise_level_img, noise_level_model)) logger.info('Model path: {:s}'.format(model_path)) logger.info(L_path) L_paths = util.get_image_paths(L_path) test_results = OrderedDict() test_results['psnr'] = [] for idx, img in enumerate(L_paths): # -------------------------------- # (1) get img_H and img_L # -------------------------------- idx += 1 img_name, ext = os.path.splitext(os.path.basename(img)) img_H = util.imread_uint(img, n_channels=n_channels) CFA, CFA4, mosaic, mask = utils_mosaic.mosaic_CFA_Bayer(img_H) # -------------------------------- # (2) initialize x # -------------------------------- if matlab_init: # matlab demosaicing for initialization CFA4 = util.uint2tensor4(CFA4).to(device) x = utils_mosaic.dm_matlab(CFA4) else: x = cv2.cvtColor(CFA, cv2.COLOR_BAYER_BG2RGB_EA) x = util.uint2tensor4(x).to(device) img_L = util.tensor2uint(x) y = util.uint2tensor4(mosaic).to(device) util.imshow(img_L) if show_img else None mask = util.single2tensor4(mask.astype(np.float32)).to(device) # -------------------------------- # (3) get rhos and sigmas # -------------------------------- rhos, sigmas = pnp.get_rho_sigma(sigma=max(0.255 / 255., noise_level_img), iter_num=iter_num, modelSigma1=modelSigma1, modelSigma2=modelSigma2, w=1.0) rhos, sigmas = torch.tensor(rhos).to(device), torch.tensor(sigmas).to( device) # -------------------------------- # (4) main iterations # -------------------------------- for i in range(iter_num): # -------------------------------- # step 1, closed-form solution # -------------------------------- x = (y + rhos[i].float() * x).div(mask + rhos[i]) # -------------------------------- # step 2, denoiser # -------------------------------- if 'ircnn' in model_name: current_idx = np.int( np.ceil(sigmas[i].cpu().numpy() * 255. / 2.) - 1) if current_idx != former_idx: model.load_state_dict(model25[str(current_idx)], strict=True) model.eval() for _, v in model.named_parameters(): v.requires_grad = False model = model.to(device) former_idx = current_idx x = torch.clamp(x, 0, 1) if x8: x = util.augment_img_tensor4(x, i % 8) if 'drunet' in model_name: x = torch.cat((x, sigmas[i].float().repeat( 1, 1, x.shape[2], x.shape[3])), dim=1) x = utils_model.test_mode(model, x, mode=2, refield=32, min_size=256, modulo=16) # x = model(x) elif 'ircnn' in model_name: x = model(x) if x8: if i % 8 == 3 or i % 8 == 5: x = util.augment_img_tensor4(x, 8 - i % 8) else: x = util.augment_img_tensor4(x, i % 8) x[mask.to(torch.bool)] = y[mask.to(torch.bool)] # -------------------------------- # (4) img_E # -------------------------------- img_E = util.tensor2uint(x) psnr = util.calculate_psnr(img_E, img_H, border=border) test_results['psnr'].append(psnr) logger.info('{:->4d}--> {:>10s} -- PSNR: {:.2f}dB'.format( idx, img_name + ext, psnr)) if save_E: util.imsave( img_E, os.path.join(E_path, img_name + '_' + model_name + '.png')) if save_L: util.imsave(img_L, os.path.join(E_path, img_name + '_L.png')) if save_LEH: util.imsave( np.concatenate([img_L, img_E, img_H], axis=1), os.path.join(E_path, img_name + model_name + '_LEH.png')) ave_psnr = sum(test_results['psnr']) / len(test_results['psnr']) logger.info('------> Average PSNR(RGB) of ({}) is : {:.2f} dB'.format( testset_name, ave_psnr))
def main(): # ---------------------------------------- # Preparation # ---------------------------------------- noise_level_img = 0 # default: 0, noise level for LR image noise_level_model = noise_level_img # noise level for model model_name = 'srmdnf_x4' # 'srmd_x2' | 'srmd_x3' | 'srmd_x4' | 'srmdnf_x2' | 'srmdnf_x3' | 'srmdnf_x4' testset_name = 'set5' # test set, 'set5' | 'srbsd68' sf = [int(s) for s in re.findall(r'\d+', model_name)][0] # scale factor x8 = False # default: False, x8 to boost performance need_degradation = True # default: True, use degradation model to generate LR image show_img = False # default: False srmd_pca_path = os.path.join('kernels', 'srmd_pca_matlab.mat') task_current = 'sr' # 'dn' for denoising | 'sr' for super-resolution n_channels = 3 # fixed in_nc = 18 if 'nf' in model_name else 19 nc = 128 # fixed, number of channels nb = 12 # fixed, number of conv layers model_pool = 'model_zoo' # fixed testsets = 'testsets' # fixed results = 'results' # fixed result_name = testset_name + '_' + model_name border = sf if task_current == 'sr' else 0 # shave boader to calculate PSNR and SSIM model_path = os.path.join(model_pool, model_name + '.pth') # ---------------------------------------- # L_path, E_path, H_path # ---------------------------------------- L_path = os.path.join(testsets, testset_name) # L_path, for Low-quality images H_path = L_path # H_path, for High-quality images E_path = os.path.join(results, result_name) # E_path, for Estimated images util.mkdir(E_path) if H_path == L_path: need_degradation = True logger_name = result_name utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name + '.log')) logger = logging.getLogger(logger_name) need_H = True if H_path is not None else False device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # ---------------------------------------- # load model # ---------------------------------------- from models.network_srmd import SRMD as net model = net(in_nc=in_nc, out_nc=n_channels, nc=nc, nb=nb, upscale=sf, act_mode='R', upsample_mode='pixelshuffle') model.load_state_dict(torch.load(model_path), strict=False) model.eval() for k, v in model.named_parameters(): v.requires_grad = False model = model.to(device) logger.info('Model path: {:s}'.format(model_path)) number_parameters = sum(map(lambda x: x.numel(), model.parameters())) logger.info('Params number: {}'.format(number_parameters)) test_results = OrderedDict() test_results['psnr'] = [] test_results['ssim'] = [] test_results['psnr_y'] = [] test_results['ssim_y'] = [] logger.info('model_name:{}, model sigma:{}, image sigma:{}'.format( model_name, noise_level_img, noise_level_model)) logger.info(L_path) L_paths = util.get_image_paths(L_path) H_paths = util.get_image_paths(H_path) if need_H else None # ---------------------------------------- # kernel and PCA reduced feature # ---------------------------------------- # kernel = sr.anisotropic_Gaussian(ksize=15, theta=np.pi, l1=4, l2=4) kernel = utils_deblur.fspecial('gaussian', 15, 0.01) # Gaussian kernel, delta kernel 0.01 P = loadmat(srmd_pca_path)['P'] degradation_vector = np.dot(P, np.reshape(kernel, (-1), order="F")) if 'nf' not in model_name: # noise-free SR degradation_vector = np.append(degradation_vector, noise_level_model / 255.) degradation_vector = torch.from_numpy(degradation_vector).view( 1, -1, 1, 1).float() for idx, img in enumerate(L_paths): # ------------------------------------ # (1) img_L # ------------------------------------ img_name, ext = os.path.splitext(os.path.basename(img)) # logger.info('{:->4d}--> {:>10s}'.format(idx+1, img_name+ext)) img_L = util.imread_uint(img, n_channels=n_channels) img_L = util.uint2single(img_L) # degradation process, blur + bicubic downsampling + Gaussian noise if need_degradation: img_L = util.modcrop(img_L, sf) img_L = sr.srmd_degradation( img_L, kernel, sf ) # equivalent to bicubic degradation if kernel is a delta kernel np.random.seed(seed=0) # for reproducibility img_L += np.random.normal(0, noise_level_img / 255., img_L.shape) util.imshow(util.single2uint(img_L), title='LR image with noise level {}'.format( noise_level_img)) if show_img else None img_L = util.single2tensor4(img_L) degradation_map = degradation_vector.repeat(1, 1, img_L.size(-2), img_L.size(-1)) img_L = torch.cat((img_L, degradation_map), dim=1) img_L = img_L.to(device) # ------------------------------------ # (2) img_E # ------------------------------------ if not x8: img_E = model(img_L) else: img_E = utils_model.test_mode(model, img_L, mode=3, sf=sf) img_E = util.tensor2uint(img_E) if need_H: # -------------------------------- # (3) img_H # -------------------------------- img_H = util.imread_uint(H_paths[idx], n_channels=n_channels) img_H = img_H.squeeze() img_H = util.modcrop(img_H, sf) # -------------------------------- # PSNR and SSIM # -------------------------------- psnr = util.calculate_psnr(img_E, img_H, border=border) ssim = util.calculate_ssim(img_E, img_H, border=border) test_results['psnr'].append(psnr) test_results['ssim'].append(ssim) logger.info('{:s} - PSNR: {:.2f} dB; SSIM: {:.4f}.'.format( img_name + ext, psnr, ssim)) util.imshow(np.concatenate([img_E, img_H], axis=1), title='Recovered / Ground-truth') if show_img else None if np.ndim(img_H) == 3: # RGB image img_E_y = util.rgb2ycbcr(img_E, only_y=True) img_H_y = util.rgb2ycbcr(img_H, only_y=True) psnr_y = util.calculate_psnr(img_E_y, img_H_y, border=border) ssim_y = util.calculate_ssim(img_E_y, img_H_y, border=border) test_results['psnr_y'].append(psnr_y) test_results['ssim_y'].append(ssim_y) # ------------------------------------ # save results # ------------------------------------ util.imsave(img_E, os.path.join(E_path, img_name + '.png')) if need_H: ave_psnr = sum(test_results['psnr']) / len(test_results['psnr']) ave_ssim = sum(test_results['ssim']) / len(test_results['ssim']) logger.info( 'Average PSNR/SSIM(RGB) - {} - x{} --PSNR: {:.2f} dB; SSIM: {:.4f}' .format(result_name, sf, ave_psnr, ave_ssim)) if np.ndim(img_H) == 3: ave_psnr_y = sum(test_results['psnr_y']) / len( test_results['psnr_y']) ave_ssim_y = sum(test_results['ssim_y']) / len( test_results['ssim_y']) logger.info( 'Average PSNR/SSIM( Y ) - {} - x{} - PSNR: {:.2f} dB; SSIM: {:.4f}' .format(result_name, sf, ave_psnr_y, ave_ssim_y))
def main(): # ---------------------------------------- # Preparation # ---------------------------------------- model_name = 'usrnet' # 'usrgan' | 'usrnet' | 'usrgan_tiny' | 'usrnet_tiny' testset_name = 'set5' # test set, 'set5' | 'srbsd68' test_sf = [4] if 'gan' in model_name else [ 2, 3, 4 ] # scale factor, from {1,2,3,4} show_img = False # default: False save_L = True # save LR image save_E = True # save estimated image save_LEH = False # save zoomed LR, E and H images # ---------------------------------------- # load testing kernels # ---------------------------------------- # kernels = hdf5storage.loadmat(os.path.join('kernels', 'kernels.mat'))['kernels'] kernels = loadmat(os.path.join('kernels', 'kernels_12.mat'))['kernels'] n_channels = 1 if 'gray' in model_name else 3 # 3 for color image, 1 for grayscale image model_pool = 'model_zoo' # fixed testsets = 'testsets' # fixed results = 'results' # fixed noise_level_img = 0 # fixed: 0, noise level for LR image noise_level_model = noise_level_img # fixed, noise level of model, default 0 result_name = testset_name + '_' + model_name model_path = os.path.join(model_pool, model_name + '.pth') # ---------------------------------------- # L_path = H_path, E_path, logger # ---------------------------------------- L_path = os.path.join( testsets, testset_name) # L_path and H_path, fixed, for Low-quality images E_path = os.path.join(results, result_name) # E_path, fixed, for Estimated images util.mkdir(E_path) logger_name = result_name utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name + '.log')) logger = logging.getLogger(logger_name) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # ---------------------------------------- # load model # ---------------------------------------- if 'tiny' in model_name: model = net(n_iter=6, h_nc=32, in_nc=4, out_nc=3, nc=[16, 32, 64, 64], nb=2, act_mode="R", downsample_mode='strideconv', upsample_mode="convtranspose") else: model = net(n_iter=8, h_nc=64, in_nc=4, out_nc=3, nc=[64, 128, 256, 512], nb=2, act_mode="R", downsample_mode='strideconv', upsample_mode="convtranspose") model.load_state_dict(torch.load(model_path), strict=True) model.eval() for key, v in model.named_parameters(): v.requires_grad = False number_parameters = sum(map(lambda x: x.numel(), model.parameters())) model = model.to(device) logger.info('Model path: {:s}'.format(model_path)) logger.info('Params number: {}'.format(number_parameters)) logger.info('Model_name:{}, image sigma:{}'.format(model_name, noise_level_img)) logger.info(L_path) L_paths = util.get_image_paths(L_path) # -------------------------------- # read images # -------------------------------- test_results_ave = OrderedDict() test_results_ave['psnr_sf_k'] = [] for sf in test_sf: for k_index in range(kernels.shape[1]): test_results = OrderedDict() test_results['psnr'] = [] kernel = kernels[0, k_index].astype(np.float64) ## other kernels # kernel = utils_deblur.blurkernel_synthesis(h=25) # motion kernel # kernel = utils_deblur.fspecial('gaussian', 25, 1.6) # Gaussian kernel # kernel = sr.shift_pixel(kernel, sf) # pixel shift; optional # kernel /= np.sum(kernel) util.surf(kernel) if show_img else None idx = 0 for img in L_paths: # -------------------------------- # (1) classical degradation, img_L # -------------------------------- idx += 1 img_name, ext = os.path.splitext(os.path.basename(img)) img_H = util.imread_uint( img, n_channels=n_channels) # HR image, int8 img_H = util.modcrop(img_H, np.lcm(sf, 8)) # modcrop # generate degraded LR image img_L = ndimage.filters.convolve(img_H, kernel[..., np.newaxis], mode='wrap') # blur img_L = sr.downsample_np( img_L, sf, center=False) # downsample, standard s-fold downsampler img_L = util.uint2single(img_L) # uint2single np.random.seed(seed=0) # for reproducibility img_L += np.random.normal(0, noise_level_img, img_L.shape) # add AWGN util.imshow(util.single2uint(img_L)) if show_img else None x = util.single2tensor4(img_L) k = util.single2tensor4(kernel[..., np.newaxis]) sigma = torch.tensor(noise_level_model).float().view( [1, 1, 1, 1]) [x, k, sigma] = [el.to(device) for el in [x, k, sigma]] # -------------------------------- # (2) inference # -------------------------------- x = model(x, k, sf, sigma) # -------------------------------- # (3) img_E # -------------------------------- img_E = util.tensor2uint(x) if save_E: util.imsave( img_E, os.path.join( E_path, img_name + '_x' + str(sf) + '_k' + str(k_index + 1) + '_' + model_name + '.png')) # -------------------------------- # (4) img_LEH # -------------------------------- img_L = util.single2uint(img_L) if save_LEH: k_v = kernel / np.max(kernel) * 1.2 k_v = util.single2uint( np.tile(k_v[..., np.newaxis], [1, 1, 3])) k_v = cv2.resize(k_v, (3 * k_v.shape[1], 3 * k_v.shape[0]), interpolation=cv2.INTER_NEAREST) img_I = cv2.resize( img_L, (sf * img_L.shape[1], sf * img_L.shape[0]), interpolation=cv2.INTER_NEAREST) img_I[:k_v.shape[0], -k_v.shape[1]:, :] = k_v img_I[:img_L.shape[0], :img_L.shape[1], :] = img_L util.imshow(np.concatenate([img_I, img_E, img_H], axis=1), title='LR / Recovered / Ground-truth' ) if show_img else None util.imsave( np.concatenate([img_I, img_E, img_H], axis=1), os.path.join( E_path, img_name + '_x' + str(sf) + '_k' + str(k_index + 1) + '_LEH.png')) if save_L: util.imsave( img_L, os.path.join( E_path, img_name + '_x' + str(sf) + '_k' + str(k_index + 1) + '_LR.png')) psnr = util.calculate_psnr( img_E, img_H, border=sf**2) # change with your own border test_results['psnr'].append(psnr) logger.info( '{:->4d}--> {:>10s} -- x{:>2d} --k{:>2d} PSNR: {:.2f}dB'. format(idx, img_name + ext, sf, k_index, psnr)) ave_psnr_k = sum(test_results['psnr']) / len(test_results['psnr']) logger.info( '------> Average PSNR(RGB) of ({}) scale factor: ({}), kernel: ({}) sigma: ({}): {:.2f} dB' .format(testset_name, sf, k_index + 1, noise_level_model, ave_psnr_k)) test_results_ave['psnr_sf_k'].append(ave_psnr_k) logger.info(test_results_ave['psnr_sf_k'])
def main(json_path='options/train_sr.json'): ''' # ---------------------------------------- # Step--1 (prepare opt) # ---------------------------------------- ''' parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, default=json_path, help='Path to option JSON file.') opt = option.parse(parser.parse_args().opt, is_train=True) util.mkdirs( (path for key, path in opt['path'].items() if 'pretrained' not in key)) # ---------------------------------------- # update opt # ---------------------------------------- init_iter, init_path_G = option.find_last_checkpoint(opt['path']['models'], net_type='G1') opt['path']['pretrained_netG1'] = init_path_G current_step = init_iter border = opt['scale'] # ---------------------------------------- # save opt to a '../option.json' file # ---------------------------------------- option.save(opt) # ---------------------------------------- # return None for missing key # ---------------------------------------- opt = option.dict_to_nonedict(opt) # ---------------------------------------- # configure logger # ---------------------------------------- logger_name = 'train' utils_logger.logger_info( logger_name, os.path.join(opt['path']['log'], logger_name + '.log')) logger = logging.getLogger(logger_name) logger.info(option.dict2str(opt)) # ---------------------------------------- # seed # ---------------------------------------- seed = opt['train']['manual_seed'] if seed is None: seed = random.randint(1, 10000) logger.info('Random seed: {}'.format(seed)) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) ''' # ---------------------------------------- # Step--2 (creat dataloader) # ---------------------------------------- ''' # ---------------------------------------- # 1) create_dataset # 2) creat_dataloader for train and test # ---------------------------------------- for phase, dataset_opt in opt['datasets'].items(): if phase == 'train': train_set = define_Dataset(phase, dataset_opt) train_size = int( math.ceil( len(train_set) / dataset_opt['dataloader_batch_size'])) logger.info('Number of train images: {:,d}, iters: {:,d}'.format( len(train_set), train_size)) train_loader = DataLoader( train_set, batch_size=dataset_opt['dataloader_batch_size'], shuffle=dataset_opt['dataloader_shuffle'], num_workers=dataset_opt['dataloader_num_workers'], drop_last=True, pin_memory=True) elif phase == 'val': val_set = define_Dataset(phase, dataset_opt) val_loader = DataLoader(val_set, batch_size=1, shuffle=False, num_workers=1, drop_last=False, pin_memory=True) else: raise NotImplementedError("Phase [%s] is not recognized." % phase) ''' # ---------------------------------------- # Step--3 (model_1) # ---------------------------------------- ''' model_1 = define_Model(opt, stage1=True) #logger.info(model_1.info_network()) model_1.init_train() #logger.info(model_1.info_params()) for epoch in range(100000): for i, train_data in enumerate(train_loader): current_step += 1 model_1.update_learning_rate(current_step) model_1.feed_data(train_data) model_1.optimize_parameters(current_step) if current_step % opt['train']['checkpoint_save'] == 0: # logger.info('Saving the model.') model_1.save(current_step) # ------------------------------- # model_1 testing # ------------------------------- if current_step % opt['train']['checkpoint_test'] == 0: # training info logs = model_1.current_log() # such as loss message_tr = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}> '.format( epoch, current_step, model_1.current_learning_rate()) for k, v in logs.items(): # merge log information into message message_tr += '\t{:s}: {:.3e}'.format(k, v) avg_psnr = 0.0 idx = 0 for val_data in val_loader: idx += 1 model_1.feed_data(val_data) model_1.test() visuals = model_1.current_visuals() E_img = util.tensor2uint(visuals['E']) H_img = util.tensor2uint(visuals['H']) # ----------------------- # calculate PSNR # ----------------------- current_psnr = util.calculate_psnr(E_img, H_img, border=border) avg_psnr += current_psnr avg_psnr = avg_psnr / idx # testing log message_val = '\tStage SR Val_PSNR_avg: {:<.2f}dB'.format( avg_psnr) message = message_tr + message_val logger.info(message) logger.info('End of Stage SR training.')
def main(): # ---------------------------------------- # Preparation # ---------------------------------------- model_name = 'usrnet' # 'usrgan' | 'usrnet' | 'usrgan_tiny' | 'usrnet_tiny' testset_name = 'set5' # test set, 'set5' | 'srbsd68' need_degradation = True # default: True sf = 4 # scale factor, only from {2, 3, 4} show_img = False # default: False save_L = True # save LR image save_E = True # save estimated image # load approximated bicubic kernels #kernels = hdf5storage.loadmat(os.path.join('kernels', 'kernels_bicubicx234.mat'))['kernels'] kernels = loadmat(os.path.join('kernels', 'kernels_bicubicx234.mat'))['kernels'] kernel = kernels[0, sf - 2].astype(np.float64) kernel = util.single2tensor4(kernel[..., np.newaxis]) task_current = 'sr' # fixed, 'sr' for super-resolution n_channels = 3 # fixed, 3 for color image model_pool = 'model_zoo' # fixed testsets = 'testsets' # fixed results = 'results' # fixed noise_level_img = 0 # fixed: 0, noise level for LR image noise_level_model = noise_level_img # fixed, noise level of model, default 0 result_name = testset_name + '_' + model_name + '_bicubic' border = sf if task_current == 'sr' else 0 # shave boader to calculate PSNR and SSIM model_path = os.path.join(model_pool, model_name + '.pth') # ---------------------------------------- # L_path, E_path, H_path # ---------------------------------------- L_path = os.path.join( testsets, testset_name) # L_path, fixed, for Low-quality images H_path = L_path # H_path, 'None' | L_path, for High-quality images E_path = os.path.join(results, result_name) # E_path, fixed, for Estimated images util.mkdir(E_path) if H_path == L_path: need_degradation = True logger_name = result_name utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name + '.log')) logger = logging.getLogger(logger_name) need_H = True if H_path is not None else False device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # ---------------------------------------- # load model # ---------------------------------------- from models.network_usrnet import USRNet as net # for pytorch version <= 1.7.1 # from models.network_usrnet_v1 import USRNet as net # for pytorch version >=1.8.1 if 'tiny' in model_name: model = net(n_iter=6, h_nc=32, in_nc=4, out_nc=3, nc=[16, 32, 64, 64], nb=2, act_mode="R", downsample_mode='strideconv', upsample_mode="convtranspose") else: model = net(n_iter=8, h_nc=64, in_nc=4, out_nc=3, nc=[64, 128, 256, 512], nb=2, act_mode="R", downsample_mode='strideconv', upsample_mode="convtranspose") model.load_state_dict(torch.load(model_path), strict=True) model.eval() for key, v in model.named_parameters(): v.requires_grad = False number_parameters = sum(map(lambda x: x.numel(), model.parameters())) logger.info('Params number: {}'.format(number_parameters)) model = model.to(device) logger.info('Model path: {:s}'.format(model_path)) test_results = OrderedDict() test_results['psnr'] = [] test_results['ssim'] = [] test_results['psnr_y'] = [] test_results['ssim_y'] = [] logger.info('model_name:{}, image sigma:{}'.format(model_name, noise_level_img)) logger.info(L_path) L_paths = util.get_image_paths(L_path) H_paths = util.get_image_paths(H_path) if need_H else None for idx, img in enumerate(L_paths): # ------------------------------------ # (1) img_L # ------------------------------------ img_name, ext = os.path.splitext(os.path.basename(img)) logger.info('{:->4d}--> {:>10s}'.format(idx + 1, img_name + ext)) img_L = util.imread_uint(img, n_channels=n_channels) img_L = util.uint2single(img_L) # degradation process, bicubic downsampling if need_degradation: img_L = util.modcrop(img_L, sf) img_L = util.imresize_np(img_L, 1 / sf) # img_L = util.uint2single(util.single2uint(img_L)) # np.random.seed(seed=0) # for reproducibility # img_L += np.random.normal(0, noise_level_img/255., img_L.shape) w, h = img_L.shape[:2] if save_L: util.imsave( util.single2uint(img_L), os.path.join(E_path, img_name + '_LR_x' + str(sf) + '.png')) img = cv2.resize(img_L, (sf * h, sf * w), interpolation=cv2.INTER_NEAREST) img = utils_deblur.wrap_boundary_liu(img, [ int(np.ceil(sf * w / 8 + 2) * 8), int(np.ceil(sf * h / 8 + 2) * 8) ]) img_wrap = sr.downsample_np(img, sf, center=False) img_wrap[:w, :h, :] = img_L img_L = img_wrap util.imshow(util.single2uint(img_L), title='LR image with noise level {}'.format( noise_level_img)) if show_img else None img_L = util.single2tensor4(img_L) img_L = img_L.to(device) # ------------------------------------ # (2) img_E # ------------------------------------ sigma = torch.tensor(noise_level_model).float().view([1, 1, 1, 1]) [img_L, kernel, sigma] = [el.to(device) for el in [img_L, kernel, sigma]] img_E = model(img_L, kernel, sf, sigma) img_E = util.tensor2uint(img_E) img_E = img_E[:sf * w, :sf * h, :] if need_H: # -------------------------------- # (3) img_H # -------------------------------- img_H = util.imread_uint(H_paths[idx], n_channels=n_channels) img_H = img_H.squeeze() img_H = util.modcrop(img_H, sf) # -------------------------------- # PSNR and SSIM # -------------------------------- psnr = util.calculate_psnr(img_E, img_H, border=border) ssim = util.calculate_ssim(img_E, img_H, border=border) test_results['psnr'].append(psnr) test_results['ssim'].append(ssim) logger.info('{:s} - PSNR: {:.2f} dB; SSIM: {:.4f}.'.format( img_name + ext, psnr, ssim)) util.imshow(np.concatenate([img_E, img_H], axis=1), title='Recovered / Ground-truth') if show_img else None if np.ndim(img_H) == 3: # RGB image img_E_y = util.rgb2ycbcr(img_E, only_y=True) img_H_y = util.rgb2ycbcr(img_H, only_y=True) psnr_y = util.calculate_psnr(img_E_y, img_H_y, border=border) ssim_y = util.calculate_ssim(img_E_y, img_H_y, border=border) test_results['psnr_y'].append(psnr_y) test_results['ssim_y'].append(ssim_y) # ------------------------------------ # save results # ------------------------------------ if save_E: util.imsave( img_E, os.path.join( E_path, img_name + '_x' + str(sf) + '_' + model_name + '.png')) if need_H: ave_psnr = sum(test_results['psnr']) / len(test_results['psnr']) ave_ssim = sum(test_results['ssim']) / len(test_results['ssim']) logger.info( 'Average PSNR/SSIM(RGB) - {} - x{} --PSNR: {:.2f} dB; SSIM: {:.4f}' .format(result_name, sf, ave_psnr, ave_ssim)) if np.ndim(img_H) == 3: ave_psnr_y = sum(test_results['psnr_y']) / len( test_results['psnr_y']) ave_ssim_y = sum(test_results['ssim_y']) / len( test_results['ssim_y']) logger.info( 'Average PSNR/SSIM( Y ) - {} - x{} - PSNR: {:.2f} dB; SSIM: {:.4f}' .format(result_name, sf, ave_psnr_y, ave_ssim_y))
def main(): # -------------------------------- # let's start! # -------------------------------- utils_logger.logger_info('test_dpsr', log_path='test_dpsr.log') logger = logging.getLogger('test_dpsr') # basic setting # ================================================ sf = 4 # scale factor noise_level_img = 0 / 255.0 # noise level of low quality image, default 0 noise_level_model = noise_level_img # noise level of model, default 0 show_img = True use_srganplus = True # 'True' for SRGAN+ (x4) and 'False' for SRResNet+ (x2,x3,x4) testsets = 'testsets' testset_current = 'BSD68' if use_srganplus and sf == 4: model_prefix = 'DPSRGAN' save_suffix = 'dpsrgan' else: model_prefix = 'DPSR' save_suffix = 'dpsr' model_path = os.path.join('DPSR_models', model_prefix + 'x%01d.pth' % (sf)) iter_num = 15 # number of iterations, fixed n_channels = 3 # only color images, fixed border = sf**2 # shave boader to calculate PSNR, fixed # k_type = ('d', 'm', 'g') k_type = ('m') # motion blur kernel # ================================================ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # -------------------------------- # load model # -------------------------------- model = SRResNet(in_nc=4, out_nc=3, nc=96, nb=16, upscale=sf, act_mode='R', upsample_mode='pixelshuffle') model.load_state_dict(torch.load(model_path), strict=True) model.eval() for k, v in model.named_parameters(): v.requires_grad = False model = model.to(device) logger.info('Model path {:s}. Testing...'.format(model_path)) # -------------------------------- # read image (img) and kernel (k) # -------------------------------- test_results = OrderedDict() for k_type_n in range(len(k_type)): # --1--> L_folder, folder of Low-quality images testsubset_current = 'x%01d_%01s' % (sf, k_type[k_type_n]) L_folder = os.path.join(testsets, testset_current, testsubset_current) # --2--> E_folder, folder of Estimated images E_folder = os.path.join(testsets, testset_current, testsubset_current + '_' + save_suffix) util.mkdir(E_folder) # --3--> H_folder, folder of High-quality images H_folder = os.path.join(testsets, testset_current, 'GT') test_results['psnr_' + k_type[k_type_n]] = [] logger.info(L_folder) idx = 0 for im in os.listdir(os.path.join(L_folder)): if im.endswith('.jpg') or im.endswith('.bmp') or im.endswith( '.png'): # -------------------------------- # (1) img_L # -------------------------------- idx += 1 img_name, ext = os.path.splitext(im) img_L = util.imread_uint(os.path.join(L_folder, im), n_channels=n_channels) util.imshow(img_L) if show_img else None np.random.seed(seed=0) # for reproducibility img_L = util.unit2single(img_L) + np.random.normal( 0, noise_level_img, img_L.shape) # -------------------------------- # (2) kernel # -------------------------------- k = loadmat(os.path.join(L_folder, img_name + '.mat'))['kernel'] k = k.astype(np.float32) k /= np.sum(k) # -------------------------------- # (3) get upperleft, denominator # -------------------------------- upperleft, denominator = utils_deblur.get_uperleft_denominator( img_L, k) # -------------------------------- # (4) get rhos and sigmas # -------------------------------- rhos, sigmas = utils_deblur.get_rho_sigma(sigma=max( 0.255 / 255., noise_level_model), iter_num=iter_num) # -------------------------------- # (5) main iteration # -------------------------------- z = img_L rhos = np.float32(rhos) sigmas = np.float32(sigmas) for i in range(iter_num): # -------------------------------- # step 1, Eq. (9) // FFT # -------------------------------- rho = rhos[i] if i != 0: z = util.imresize_np(z, 1 / sf, True) z = np.real( np.fft.ifft2( (upperleft + rho * np.fft.fft2(z, axes=(0, 1))) / (denominator + rho), axes=(0, 1))) # imsave('LR_deblurred_%02d.png'%i, np.clip(z, 0, 1)) # -------------------------------- # step 2, Eq. (12) // super-resolver # -------------------------------- sigma = torch.from_numpy(np.array(sigmas[i])) img_L = util.single2tensor4(z) noise_level_map = torch.ones( (1, 1, img_L.size(2), img_L.size(3)), dtype=torch.float).mul_(sigma) img_L = torch.cat((img_L, noise_level_map), dim=1) img_L = img_L.to(device) # with torch.no_grad(): z = model(img_L) z = util.tensor2single(z) # -------------------------------- # (6) img_E # -------------------------------- img_E = util.single2uint(z) # np.uint8((z * 255.0).round()) # -------------------------------- # (7) img_H # -------------------------------- img_H = util.imread_uint(os.path.join(H_folder, img_name[:7] + '.png'), n_channels=n_channels) util.imshow( np.concatenate([img_E, img_H], axis=1), title='Recovered / Ground-truth') if show_img else None psnr = util.calculate_psnr(img_E, img_H, border=border) logger.info('{:->4d}--> {:>10s}, {:.2f}dB'.format( idx, im, psnr)) test_results['psnr_' + k_type[k_type_n]].append(psnr) util.imsave(img_E, os.path.join(E_folder, img_name + ext)) ave_psnr = sum(test_results['psnr_' + k_type[k_type_n]]) / len( test_results['psnr_' + k_type[k_type_n]]) logger.info( '------> Average PSNR(RGB) of ({} - {}) is : {:.2f} dB'.format( testset_current, testsubset_current, ave_psnr))
def main(): # ---------------------------------------- # Preparation # ---------------------------------------- noise_level_img = 0/255.0 # set AWGN noise level for LR image, default: 0, noise_level_model = noise_level_img # setnoise level of model, default 0 model_name = 'drunet_color' # set denoiser, | 'drunet_color' | 'ircnn_gray' | 'drunet_gray' | 'ircnn_color' testset_name = 'srbsd68' # set test set, 'set5' | 'srbsd68' x8 = True # default: False, x8 to boost performance test_sf = [2] # set scale factor, default: [2, 3, 4], [2], [3], [4] iter_num = 24 # set number of iterations, default: 24 for SISR modelSigma1 = 49 # set sigma_1, default: 49 classical_degradation = True # set classical degradation or bicubic degradation show_img = False # default: False save_L = True # save LR image save_E = True # save estimated image save_LEH = False # save zoomed LR, E and H images task_current = 'sr' # 'sr' for super-resolution n_channels = 1 if 'gray' in model_name else 3 # fixed model_zoo = 'model_zoo' # fixed testsets = 'testsets' # fixed results = 'results' # fixed result_name = testset_name + '_' + task_current + '_' + model_name model_path = os.path.join(model_zoo, model_name+'.pth') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') torch.cuda.empty_cache() # ---------------------------------------- # L_path, E_path, H_path # ---------------------------------------- L_path = os.path.join(testsets, testset_name) # L_path, for Low-quality images E_path = os.path.join(results, result_name) # E_path, for Estimated images util.mkdir(E_path) logger_name = result_name utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name+'.log')) logger = logging.getLogger(logger_name) # ---------------------------------------- # load model # ---------------------------------------- if 'drunet' in model_name: from models.network_unet import UNetRes as net model = net(in_nc=n_channels+1, out_nc=n_channels, nc=[64, 128, 256, 512], nb=4, act_mode='R', downsample_mode="strideconv", upsample_mode="convtranspose") model.load_state_dict(torch.load(model_path), strict=True) model.eval() for _, v in model.named_parameters(): v.requires_grad = False model = model.to(device) elif 'ircnn' in model_name: from models.network_dncnn import IRCNN as net model = net(in_nc=n_channels, out_nc=n_channels, nc=64) model25 = torch.load(model_path) former_idx = 0 logger.info('model_name:{}, image sigma:{:.3f}, model sigma:{:.3f}'.format(model_name, noise_level_img, noise_level_model)) logger.info('Model path: {:s}'.format(model_path)) logger.info(L_path) L_paths = util.get_image_paths(L_path) # -------------------------------- # load kernel # -------------------------------- # kernels = hdf5storage.loadmat(os.path.join('kernels', 'Levin09.mat'))['kernels'] if classical_degradation: kernels = hdf5storage.loadmat(os.path.join('kernels', 'kernels_12.mat'))['kernels'] else: kernels = hdf5storage.loadmat(os.path.join('kernels', 'kernel_bicubicx234.mat'))['kernels'] test_results_ave = OrderedDict() test_results_ave['psnr_sf_k'] = [] test_results_ave['psnr_y_sf_k'] = [] for sf in test_sf: border = sf modelSigma2 = max(sf, noise_level_model*255.) k_num = 8 if classical_degradation else 1 for k_index in range(k_num): logger.info('--------- sf:{:>1d} --k:{:>2d} ---------'.format(sf, k_index)) test_results = OrderedDict() test_results['psnr'] = [] test_results['psnr_y'] = [] if not classical_degradation: # for bicubic degradation k_index = sf-2 k = kernels[0, k_index].astype(np.float64) util.surf(k) if show_img else None for idx, img in enumerate(L_paths): # -------------------------------- # (1) get img_L # -------------------------------- img_name, ext = os.path.splitext(os.path.basename(img)) img_H = util.imread_uint(img, n_channels=n_channels) img_H = util.modcrop(img_H, sf) # modcrop if classical_degradation: img_L = sr.classical_degradation(img_H, k, sf) util.imshow(img_L) if show_img else None img_L = util.uint2single(img_L) else: img_L = util.imresize_np(util.uint2single(img_H), 1/sf) np.random.seed(seed=0) # for reproducibility img_L += np.random.normal(0, noise_level_img, img_L.shape) # add AWGN # -------------------------------- # (2) get rhos and sigmas # -------------------------------- rhos, sigmas = pnp.get_rho_sigma(sigma=max(0.255/255., noise_level_model), iter_num=iter_num, modelSigma1=modelSigma1, modelSigma2=modelSigma2, w=1) rhos, sigmas = torch.tensor(rhos).to(device), torch.tensor(sigmas).to(device) # -------------------------------- # (3) initialize x, and pre-calculation # -------------------------------- x = cv2.resize(img_L, (img_L.shape[1]*sf, img_L.shape[0]*sf), interpolation=cv2.INTER_CUBIC) if np.ndim(x)==2: x = x[..., None] if classical_degradation: x = sr.shift_pixel(x, sf) x = util.single2tensor4(x).to(device) img_L_tensor, k_tensor = util.single2tensor4(img_L), util.single2tensor4(np.expand_dims(k, 2)) [k_tensor, img_L_tensor] = util.todevice([k_tensor, img_L_tensor], device) FB, FBC, F2B, FBFy = sr.pre_calculate(img_L_tensor, k_tensor, sf) # -------------------------------- # (4) main iterations # -------------------------------- for i in range(iter_num): # -------------------------------- # step 1, FFT # -------------------------------- tau = rhos[i].float().repeat(1, 1, 1, 1) x = sr.data_solution(x.float(), FB, FBC, F2B, FBFy, tau, sf) if 'ircnn' in model_name: current_idx = np.int(np.ceil(sigmas[i].cpu().numpy()*255./2.)-1) if current_idx != former_idx: model.load_state_dict(model25[str(current_idx)], strict=True) model.eval() for _, v in model.named_parameters(): v.requires_grad = False model = model.to(device) former_idx = current_idx # -------------------------------- # step 2, denoiser # -------------------------------- if x8: x = util.augment_img_tensor4(x, i % 8) if 'drunet' in model_name: x = torch.cat((x, sigmas[i].float().repeat(1, 1, x.shape[2], x.shape[3])), dim=1) x = utils_model.test_mode(model, x, mode=2, refield=32, min_size=256, modulo=16) elif 'ircnn' in model_name: x = model(x) if x8: if i % 8 == 3 or i % 8 == 5: x = util.augment_img_tensor4(x, 8 - i % 8) else: x = util.augment_img_tensor4(x, i % 8) # -------------------------------- # (3) img_E # -------------------------------- img_E = util.tensor2uint(x) if save_E: util.imsave(img_E, os.path.join(E_path, img_name+'_x'+str(sf)+'_k'+str(k_index)+'_'+model_name+'.png')) if n_channels == 1: img_H = img_H.squeeze() # -------------------------------- # (4) img_LEH # -------------------------------- img_L = util.single2uint(img_L).squeeze() if save_LEH: k_v = k/np.max(k)*1.0 if n_channels==1: k_v = util.single2uint(k_v) else: k_v = util.single2uint(np.tile(k_v[..., np.newaxis], [1, 1, n_channels])) k_v = cv2.resize(k_v, (3*k_v.shape[1], 3*k_v.shape[0]), interpolation=cv2.INTER_NEAREST) img_I = cv2.resize(img_L, (sf*img_L.shape[1], sf*img_L.shape[0]), interpolation=cv2.INTER_NEAREST) img_I[:k_v.shape[0], -k_v.shape[1]:, ...] = k_v img_I[:img_L.shape[0], :img_L.shape[1], ...] = img_L util.imshow(np.concatenate([img_I, img_E, img_H], axis=1), title='LR / Recovered / Ground-truth') if show_img else None util.imsave(np.concatenate([img_I, img_E, img_H], axis=1), os.path.join(E_path, img_name+'_x'+str(sf)+'_k'+str(k_index)+'_LEH.png')) if save_L: util.imsave(img_L, os.path.join(E_path, img_name+'_x'+str(sf)+'_k'+str(k_index)+'_LR.png')) psnr = util.calculate_psnr(img_E, img_H, border=border) test_results['psnr'].append(psnr) logger.info('{:->4d}--> {:>10s} -- sf:{:>1d} --k:{:>2d} PSNR: {:.2f}dB'.format(idx+1, img_name+ext, sf, k_index, psnr)) if n_channels == 3: img_E_y = util.rgb2ycbcr(img_E, only_y=True) img_H_y = util.rgb2ycbcr(img_H, only_y=True) psnr_y = util.calculate_psnr(img_E_y, img_H_y, border=border) test_results['psnr_y'].append(psnr_y) # -------------------------------- # Average PSNR for all kernels # -------------------------------- ave_psnr_k = sum(test_results['psnr']) / len(test_results['psnr']) logger.info('------> Average PSNR(RGB) of ({}) scale factor: ({}), kernel: ({}) sigma: ({:.2f}): {:.2f} dB'.format(testset_name, sf, k_index, noise_level_model, ave_psnr_k)) test_results_ave['psnr_sf_k'].append(ave_psnr_k) if n_channels == 3: # RGB image ave_psnr_y_k = sum(test_results['psnr_y']) / len(test_results['psnr_y']) logger.info('------> Average PSNR(Y) of ({}) scale factor: ({}), kernel: ({}) sigma: ({:.2f}): {:.2f} dB'.format(testset_name, sf, k_index, noise_level_model, ave_psnr_y_k)) test_results_ave['psnr_y_sf_k'].append(ave_psnr_y_k) # --------------------------------------- # Average PSNR for all sf and kernels # --------------------------------------- ave_psnr_sf_k = sum(test_results_ave['psnr_sf_k']) / len(test_results_ave['psnr_sf_k']) logger.info('------> Average PSNR of ({}) {:.2f} dB'.format(testset_name, ave_psnr_sf_k)) if n_channels == 3: ave_psnr_y_sf_k = sum(test_results_ave['psnr_y_sf_k']) / len(test_results_ave['psnr_y_sf_k']) logger.info('------> Average PSNR of ({}) {:.2f} dB'.format(testset_name, ave_psnr_y_sf_k))
def main(): # ---------------------------------------- # Preparation # ---------------------------------------- noise_level_img = 50 # noise level for noisy image model_name = 'ircnn_gray' # 'ircnn_gray' | 'ircnn_color' testset_name = 'set12' # test set, 'bsd68' | 'set12' need_degradation = True # default: True x8 = False # default: False, x8 to boost performance show_img = False # default: False current_idx = min(24, np.int(np.ceil(noise_level_img/2)-1)) # current_idx+1 th denoiser task_current = 'dn' # fixed, 'dn' for denoising | 'sr' for super-resolution sf = 1 # unused for denoising if 'color' in model_name: n_channels = 3 # fixed, 1 for grayscale image, 3 for color image else: n_channels = 1 # fixed for grayscale image model_pool = 'model_zoo' # fixed testsets = 'testsets' # fixed results = 'results' # fixed result_name = testset_name + '_' + model_name # fixed border = sf if task_current == 'sr' else 0 # shave boader to calculate PSNR and SSIM model_path = os.path.join(model_pool, model_name+'.pth') # ---------------------------------------- # L_path, E_path, H_path # ---------------------------------------- L_path = os.path.join(testsets, testset_name) # L_path, for Low-quality images H_path = L_path # H_path, for High-quality images E_path = os.path.join(results, result_name) # E_path, for Estimated images util.mkdir(E_path) if H_path == L_path: need_degradation = True logger_name = result_name utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name+'.log')) logger = logging.getLogger(logger_name) need_H = True if H_path is not None else False device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # ---------------------------------------- # load model # ---------------------------------------- model25 = torch.load(model_path) from models.network_dncnn import IRCNN as net model = net(in_nc=n_channels, out_nc=n_channels, nc=64) model.load_state_dict(model25[str(current_idx)], strict=True) model.eval() for _, v in model.named_parameters(): v.requires_grad = False model = model.to(device) logger.info('Model path: {:s}'.format(model_path)) number_parameters = sum(map(lambda x: x.numel(), model.parameters())) logger.info('Params number: {}'.format(number_parameters)) test_results = OrderedDict() test_results['psnr'] = [] test_results['ssim'] = [] logger.info('model_name:{}, image sigma:{}'.format(model_name, noise_level_img)) logger.info(L_path) L_paths = util.get_image_paths(L_path) H_paths = util.get_image_paths(H_path) if need_H else None for idx, img in enumerate(L_paths): # ------------------------------------ # (1) img_L # ------------------------------------ img_name, ext = os.path.splitext(os.path.basename(img)) # logger.info('{:->4d}--> {:>10s}'.format(idx+1, img_name+ext)) img_L = util.imread_uint(img, n_channels=n_channels) img_L = util.uint2single(img_L) if need_degradation: # degradation process np.random.seed(seed=0) # for reproducibility img_L += np.random.normal(0, noise_level_img/255., img_L.shape) util.imshow(util.single2uint(img_L), title='Noisy image with noise level {}'.format(noise_level_img)) if show_img else None img_L = util.single2tensor4(img_L) img_L = img_L.to(device) # ------------------------------------ # (2) img_E # ------------------------------------ if not x8: img_E = model(img_L) else: img_E = utils_model.test_mode(model, img_L, mode=3) img_E = util.tensor2uint(img_E) if need_H: # -------------------------------- # (3) img_H # -------------------------------- img_H = util.imread_uint(H_paths[idx], n_channels=n_channels) img_H = img_H.squeeze() # -------------------------------- # PSNR and SSIM # -------------------------------- psnr = util.calculate_psnr(img_E, img_H, border=border) ssim = util.calculate_ssim(img_E, img_H, border=border) test_results['psnr'].append(psnr) test_results['ssim'].append(ssim) logger.info('{:s} - PSNR: {:.2f} dB; SSIM: {:.4f}.'.format(img_name+ext, psnr, ssim)) util.imshow(np.concatenate([img_E, img_H], axis=1), title='Recovered / Ground-truth') if show_img else None # ------------------------------------ # save results # ------------------------------------ util.imsave(img_E, os.path.join(E_path, img_name+ext)) if need_H: ave_psnr = sum(test_results['psnr']) / len(test_results['psnr']) ave_ssim = sum(test_results['ssim']) / len(test_results['ssim']) logger.info('Average PSNR/SSIM(RGB) - {} - PSNR: {:.2f} dB; SSIM: {:.4f}'.format(result_name, ave_psnr, ave_ssim))
def main(): # -------------------------------- # let's start! # -------------------------------- utils_logger.logger_info('test_srresnetplus', log_path='test_srresnetplus.log') logger = logging.getLogger('test_srresnetplus') # basic setting # ================================================ sf = 4 # scale factor noise_level_img = 0 / 255.0 # noise level of L image noise_level_model = noise_level_img show_img = True use_srganplus = True # 'True' for SRGAN+ (x4) and 'False' for SRResNet+ (x2,x3,x4) testsets = 'testsets' testset_current = 'Set5' n_channels = 3 # only color images, fixed border = sf # shave boader to calculate PSNR and SSIM if use_srganplus and sf == 4: model_prefix = 'DPSRGAN' save_suffix = 'dpsrgan' else: model_prefix = 'DPSR' save_suffix = 'dpsr' model_path = os.path.join('DPSR_models', model_prefix + 'x%01d.pth' % (sf)) # -------------------------------- # L_folder, E_folder, H_folder # -------------------------------- # --1--> L_folder, folder of Low-quality images testsubset_current = 'x%01d' % (sf) L_folder = os.path.join(testsets, testset_current, testsubset_current) # --2--> E_folder, folder of Estimated images E_folder = os.path.join(testsets, testset_current, testsubset_current + '_' + save_suffix) util.mkdir(E_folder) # --3--> H_folder, folder of High-quality images H_folder = os.path.join(testsets, testset_current, 'GT') need_H = True if os.path.exists(H_folder) else False # ================================================ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # -------------------------------- # load model # -------------------------------- model = SRResNet(in_nc=4, out_nc=3, nc=96, nb=16, upscale=sf, act_mode='R', upsample_mode='pixelshuffle') model.load_state_dict(torch.load(model_path), strict=True) model.eval() for k, v in model.named_parameters(): v.requires_grad = False model = model.to(device) logger.info('Model path {:s}. \nTesting...'.format(model_path)) test_results = OrderedDict() test_results['psnr'] = [] test_results['ssim'] = [] test_results['psnr_y'] = [] test_results['ssim_y'] = [] idx = 0 logger.info(L_folder) for im in os.listdir(os.path.join(L_folder)): if im.endswith('.jpg') or im.endswith('.bmp') or im.endswith('.png'): logger.info('{:->4d}--> {:>10s}'.format( idx, im)) if not need_H else None # -------------------------------- # (1) img_L # -------------------------------- idx += 1 img_name, ext = os.path.splitext(im) img = util.imread_uint(os.path.join(L_folder, im), n_channels=n_channels) np.random.seed(seed=0) # for reproducibility img = util.unit2single(img) + np.random.normal( 0, noise_level_img, img.shape) util.imshow(img, title='Low-resolution image') if show_img else None img_L = util.single2tensor4(img) noise_level_map = torch.ones( (1, 1, img_L.size(2), img_L.size(3)), dtype=torch.float).mul_(noise_level_model) img_L = torch.cat((img_L, noise_level_map), dim=1) img_L = img_L.to(device) # -------------------------------- # (2) img_E # -------------------------------- img_E = model(img_L) img_E = util.tensor2single(img_E) img_E = util.single2uint(img_E) # np.uint8((z * 255.0).round()) if need_H: # -------------------------------- # (3) img_H # -------------------------------- img_H = util.imread_uint(os.path.join(H_folder, im), n_channels=n_channels) img_H = util.modcrop(img_H, scale=sf) # -------------------------------- # PSNR and SSIM # -------------------------------- psnr = util.calculate_psnr(img_E, img_H, border=border) ssim = util.calculate_ssim(img_E, img_H, border=border) test_results['psnr'].append(psnr) test_results['ssim'].append(ssim) if np.ndim(img_H) == 3: # RGB image img_E_y = util.rgb2ycbcr(img_E, only_y=True) img_H_y = util.rgb2ycbcr(img_H, only_y=True) psnr_y = util.calculate_psnr(img_E_y, img_H_y, border=border) ssim_y = util.calculate_ssim(img_E_y, img_H_y, border=border) test_results['psnr_y'].append(psnr_y) test_results['ssim_y'].append(ssim_y) logger.info( '{:->20s} - PSNR: {:.2f} dB; SSIM: {:.4f}; PSNR_Y: {:.2f} dB; SSIM_Y: {:.4f}.' .format(im, psnr, ssim, psnr_y, ssim_y)) else: logger.info( '{:20s} - PSNR: {:.2f} dB; SSIM: {:.4f}.'.format( im, psnr, ssim)) # -------------------------------- # save results # -------------------------------- util.imshow(np.concatenate([img_E, img_H], axis=1), title='Recovered / Ground-truth') if show_img else None util.imsave( img_E, os.path.join(E_folder, img_name + '_x{}'.format(sf) + ext)) if need_H: ave_psnr = sum(test_results['psnr']) / len(test_results['psnr']) ave_ssim = sum(test_results['ssim']) / len(test_results['ssim']) logger.info( 'PSNR/SSIM(RGB) - {} - x{} -- PSNR: {:.2f} dB; SSIM: {:.4f}'. format(testset_current, sf, ave_psnr, ave_ssim)) if np.ndim(img_H) == 3: ave_psnr_y = sum(test_results['psnr_y']) / len( test_results['psnr_y']) ave_ssim_y = sum(test_results['ssim_y']) / len( test_results['ssim_y']) logger.info( 'PSNR/SSIM( Y ) - {} - x{} -- PSNR: {:.2f} dB; SSIM: {:.4f}'. format(testset_current, sf, ave_psnr_y, ave_ssim_y))
model.test() visuals = model.current_visuals() E_img = util.tensor2uint(visuals['E']) H_img = util.tensor2uint(visuals['H']) # ----------------------- # save estimated image E # ----------------------- save_img_path = os.path.join(img_dir, '{:s}_{:d}.png'.format(img_name, current_step)) util.imsave(E_img, save_img_path) # ----------------------- # calculate PSNR # ----------------------- current_psnr = util.calculate_psnr(E_img, H_img, border=border) logger.info('{:->4d}--> {:>10s} | {:<4.2f}dB'.format(idx, image_name_ext, current_psnr)) avg_psnr += current_psnr avg_psnr = avg_psnr / idx # testing log logger.info('<epoch:{:3d}, iter:{:8,d}, Average PSNR : {:<.2f}dB\n'.format(epoch, current_step, avg_psnr)) logger.info('Saving the final model.') model.save('latest') logger.info('End of training.')
def main(): # ---------------------------------------- # Preparation # ---------------------------------------- noise_level_img = 30 # noise level for noisy image noise_level_model = noise_level_img # noise level for model model_name = 'ffdnet_color' # 'ffdnet_gray' | 'ffdnet_color' | 'ffdnet_color_clip' | 'ffdnet_gray_clip' testset_name = 'CBSD68' # test set, 'bsd68' | 'cbsd68' | 'set12' need_degradation = True # default: True show_img = False # default: False task_current = 'dn' # 'dn' for denoising | 'sr' for super-resolution sf = 1 # unused for denoising if 'color' in model_name: n_channels = 3 # setting for color image nc = 96 # setting for color image nb = 12 # setting for color image else: n_channels = 1 # setting for grayscale image nc = 64 # setting for grayscale image nb = 15 # setting for grayscale image if 'clip' in model_name: use_clip = True # clip the intensities into range of [0, 1] else: use_clip = False model_pool = 'model_zoo' # fixed testsets = 'testsets' # fixed results = 'results' # fixed result_name = testset_name + '_' + model_name border = sf if task_current == 'sr' else 0 # shave boader to calculate PSNR and SSIM model_path = os.path.join(model_pool, model_name + '.pth') # ---------------------------------------- # L_path, E_path, H_path # ---------------------------------------- L_path = os.path.join(testsets, testset_name) # L_path, for Low-quality images H_path = L_path # H_path, for High-quality images E_path = os.path.join(results, result_name) # E_path, for Estimated images util.mkdir(E_path) if H_path == L_path: need_degradation = True logger_name = result_name utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name + '.log')) logger = logging.getLogger(logger_name) need_H = True if H_path is not None else False device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # ---------------------------------------- # load model # ---------------------------------------- from models.network_ffdnet import FFDNet as net model = net(in_nc=n_channels, out_nc=n_channels, nc=nc, nb=nb, act_mode='R') model.load_state_dict(torch.load(model_path), strict=True) model.eval() for k, v in model.named_parameters(): v.requires_grad = False model = model.to(device) logger.info('Model path: {:s}'.format(model_path)) test_results = OrderedDict() test_results['psnr'] = [] test_results['ssim'] = [] logger.info('model_name:{}, model sigma:{}, image sigma:{}'.format( model_name, noise_level_img, noise_level_model)) logger.info(L_path) L_paths = util.get_image_paths(L_path) H_paths = util.get_image_paths(H_path) if need_H else None for idx, img in enumerate(L_paths): # ------------------------------------ # (1) img_L # ------------------------------------ img_name, ext = os.path.splitext(os.path.basename(img)) # logger.info('{:->4d}--> {:>10s}'.format(idx+1, img_name+ext)) img_L = util.imread_uint(img, n_channels=n_channels) img_L = util.uint2single(img_L) if need_degradation: # degradation process np.random.seed(seed=0) # for reproducibility img_L += np.random.normal(0, noise_level_img / 255., img_L.shape) if use_clip: img_L = util.uint2single(util.single2uint(img_L)) util.imshow(util.single2uint(img_L), title='Noisy image with noise level {}'.format( noise_level_img)) if show_img else None img_L = util.single2tensor4(img_L) img_L = img_L.to(device) sigma = torch.full((1, 1, 1, 1), noise_level_model / 255.).type_as(img_L) # ------------------------------------ # (2) img_E # ------------------------------------ img_E = model(img_L, sigma) img_E = util.tensor2uint(img_E) if need_H: # -------------------------------- # (3) img_H # -------------------------------- img_H = util.imread_uint(H_paths[idx], n_channels=n_channels) img_H = img_H.squeeze() # -------------------------------- # PSNR and SSIM # -------------------------------- psnr = util.calculate_psnr(img_E, img_H, border=border) ssim = util.calculate_ssim(img_E, img_H, border=border) test_results['psnr'].append(psnr) test_results['ssim'].append(ssim) logger.info('{:s} - PSNR: {:.2f} dB; SSIM: {:.4f}.'.format( img_name + ext, psnr, ssim)) util.imshow(np.concatenate([img_E, img_H], axis=1), title='Recovered / Ground-truth') if show_img else None # ------------------------------------ # save results # ------------------------------------ util.imsave(img_E, os.path.join(E_path, img_name + ext)) if need_H: ave_psnr = sum(test_results['psnr']) / len(test_results['psnr']) ave_ssim = sum(test_results['ssim']) / len(test_results['ssim']) logger.info( 'Average PSNR/SSIM(RGB) - {} - PSNR: {:.2f} dB; SSIM: {:.4f}'. format(result_name, ave_psnr, ave_ssim))
def main(): # ---------------------------------------- # Preparation # ---------------------------------------- noise_level_img = 15 # set AWGN noise level for noisy image noise_level_model = noise_level_img # set noise level for model model_name = 'drunet_gray' # set denoiser model, 'drunet_gray' | 'drunet_color' testset_name = 'bsd68' # set test set, 'bsd68' | 'cbsd68' | 'set12' x8 = False # default: False, x8 to boost performance show_img = False # default: False border = 0 # shave boader to calculate PSNR and SSIM if 'color' in model_name: n_channels = 3 # 3 for color image else: n_channels = 1 # 1 for grayscale image model_pool = 'model_zoo' # fixed testsets = 'testsets' # fixed results = 'results' # fixed task_current = 'dn' # 'dn' for denoising result_name = testset_name + '_' + task_current + '_' + model_name model_path = os.path.join(model_pool, model_name + '.pth') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') torch.cuda.empty_cache() # ---------------------------------------- # L_path, E_path, H_path # ---------------------------------------- L_path = os.path.join(testsets, testset_name) # L_path, for Low-quality images E_path = os.path.join(results, result_name) # E_path, for Estimated images util.mkdir(E_path) logger_name = result_name utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name + '.log')) logger = logging.getLogger(logger_name) # ---------------------------------------- # load model # ---------------------------------------- from models.network_unet import UNetRes as net model = net(in_nc=n_channels + 1, out_nc=n_channels, nc=[64, 128, 256, 512], nb=4, act_mode='R', downsample_mode="strideconv", upsample_mode="convtranspose") model.load_state_dict(torch.load(model_path), strict=True) model.eval() for k, v in model.named_parameters(): v.requires_grad = False model = model.to(device) logger.info('Model path: {:s}'.format(model_path)) number_parameters = sum(map(lambda x: x.numel(), model.parameters())) logger.info('Params number: {}'.format(number_parameters)) test_results = OrderedDict() test_results['psnr'] = [] test_results['ssim'] = [] logger.info('model_name:{}, model sigma:{}, image sigma:{}'.format( model_name, noise_level_img, noise_level_model)) logger.info(L_path) L_paths = util.get_image_paths(L_path) for idx, img in enumerate(L_paths): # ------------------------------------ # (1) img_L # ------------------------------------ img_name, ext = os.path.splitext(os.path.basename(img)) # logger.info('{:->4d}--> {:>10s}'.format(idx+1, img_name+ext)) img_H = util.imread_uint(img, n_channels=n_channels) img_L = util.uint2single(img_H) # Add noise without clipping np.random.seed(seed=0) # for reproducibility img_L += np.random.normal(0, noise_level_img / 255., img_L.shape) util.imshow(util.single2uint(img_L), title='Noisy image with noise level {}'.format( noise_level_img)) if show_img else None img_L = util.single2tensor4(img_L) img_L = torch.cat( (img_L, torch.FloatTensor([noise_level_model / 255.]).repeat( 1, 1, img_L.shape[2], img_L.shape[3])), dim=1) img_L = img_L.to(device) # ------------------------------------ # (2) img_E # ------------------------------------ if not x8 and img_L.size(2) // 8 == 0 and img_L.size(3) // 8 == 0: img_E = model(img_L) elif not x8 and (img_L.size(2) // 8 != 0 or img_L.size(3) // 8 != 0): img_E = utils_model.test_mode(model, img_L, refield=64, mode=5) elif x8: img_E = utils_model.test_mode(model, img_L, mode=3) img_E = util.tensor2uint(img_E) # -------------------------------- # PSNR and SSIM # -------------------------------- if n_channels == 1: img_H = img_H.squeeze() psnr = util.calculate_psnr(img_E, img_H, border=border) ssim = util.calculate_ssim(img_E, img_H, border=border) test_results['psnr'].append(psnr) test_results['ssim'].append(ssim) logger.info('{:s} - PSNR: {:.2f} dB; SSIM: {:.4f}.'.format( img_name + ext, psnr, ssim)) # ------------------------------------ # save results # ------------------------------------ util.imsave(img_E, os.path.join(E_path, img_name + ext)) ave_psnr = sum(test_results['psnr']) / len(test_results['psnr']) ave_ssim = sum(test_results['ssim']) / len(test_results['ssim']) logger.info( 'Average PSNR/SSIM(RGB) - {} - PSNR: {:.2f} dB; SSIM: {:.4f}'.format( result_name, ave_psnr, ave_ssim))
def main(): # ---------------------------------------- # Preparation # ---------------------------------------- noise_level_img = 7.65 / 255.0 # default: 0, noise level for LR image noise_level_model = noise_level_img # noise level of model, default 0 model_name = 'drunet_gray' # 'drunet_gray' | 'drunet_color' | 'ircnn_gray' | 'ircnn_color' testset_name = 'Set3C' # test set, 'set5' | 'srbsd68' x8 = True # default: False, x8 to boost performance iter_num = 8 # number of iterations modelSigma1 = 49 modelSigma2 = noise_level_model * 255. show_img = False # default: False save_L = True # save LR image save_E = True # save estimated image save_LEH = False # save zoomed LR, E and H images border = 0 # -------------------------------- # load kernel # -------------------------------- kernels = hdf5storage.loadmat(os.path.join('kernels', 'Levin09.mat'))['kernels'] sf = 1 task_current = 'deblur' # 'deblur' for deblurring n_channels = 3 if 'color' in model_name else 1 # fixed model_zoo = 'model_zoo' # fixed testsets = 'testsets' # fixed results = 'results' # fixed result_name = testset_name + '_' + task_current + '_' + model_name model_path = os.path.join(model_zoo, model_name + '.pth') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') torch.cuda.empty_cache() # ---------------------------------------- # L_path, E_path, H_path # ---------------------------------------- L_path = os.path.join(testsets, testset_name) # L_path, for Low-quality images E_path = os.path.join(results, result_name) # E_path, for Estimated images util.mkdir(E_path) logger_name = result_name utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name + '.log')) logger = logging.getLogger(logger_name) # ---------------------------------------- # load model # ---------------------------------------- if 'drunet' in model_name: from models.network_unet import UNetRes as net model = net(in_nc=n_channels + 1, out_nc=n_channels, nc=[64, 128, 256, 512], nb=4, act_mode='R', downsample_mode="strideconv", upsample_mode="convtranspose") model.load_state_dict(torch.load(model_path), strict=True) model.eval() for _, v in model.named_parameters(): v.requires_grad = False model = model.to(device) elif 'ircnn' in model_name: from models.network_dncnn import IRCNN as net model = net(in_nc=n_channels, out_nc=n_channels, nc=64) model25 = torch.load(model_path) former_idx = 0 logger.info('model_name:{}, image sigma:{:.3f}, model sigma:{:.3f}'.format( model_name, noise_level_img, noise_level_model)) logger.info('Model path: {:s}'.format(model_path)) logger.info(L_path) L_paths = util.get_image_paths(L_path) test_results_ave = OrderedDict() test_results_ave['psnr'] = [] # record average PSNR for each kernel for k_index in range(kernels.shape[1]): logger.info('-------k:{:>2d} ---------'.format(k_index)) test_results = OrderedDict() test_results['psnr'] = [] k = kernels[0, k_index].astype(np.float64) util.imshow(k) if show_img else None for idx, img in enumerate(L_paths): # -------------------------------- # (1) get img_L # -------------------------------- img_name, ext = os.path.splitext(os.path.basename(img)) img_H = util.imread_uint(img, n_channels=n_channels) img_H = util.modcrop(img_H, 8) # modcrop img_L = ndimage.filters.convolve(img_H, np.expand_dims(k, axis=2), mode='wrap') util.imshow(img_L) if show_img else None img_L = util.uint2single(img_L) np.random.seed(seed=0) # for reproducibility img_L += np.random.normal(0, noise_level_img, img_L.shape) # add AWGN # -------------------------------- # (2) get rhos and sigmas # -------------------------------- rhos, sigmas = pnp.get_rho_sigma(sigma=max(0.255 / 255., noise_level_model), iter_num=iter_num, modelSigma1=modelSigma1, modelSigma2=modelSigma2, w=1.0) rhos, sigmas = torch.tensor(rhos).to(device), torch.tensor( sigmas).to(device) # -------------------------------- # (3) initialize x, and pre-calculation # -------------------------------- x = util.single2tensor4(img_L).to(device) img_L_tensor, k_tensor = util.single2tensor4( img_L), util.single2tensor4(np.expand_dims(k, 2)) [k_tensor, img_L_tensor] = util.todevice([k_tensor, img_L_tensor], device) FB, FBC, F2B, FBFy = sr.pre_calculate(img_L_tensor, k_tensor, sf) # -------------------------------- # (4) main iterations # -------------------------------- for i in range(iter_num): # -------------------------------- # step 1, FFT # -------------------------------- tau = rhos[i].float().repeat(1, 1, 1, 1) x = sr.data_solution(x, FB, FBC, F2B, FBFy, tau, sf) if 'ircnn' in model_name: current_idx = np.int( np.ceil(sigmas[i].cpu().numpy() * 255. / 2.) - 1) if current_idx != former_idx: model.load_state_dict(model25[str(current_idx)], strict=True) model.eval() for _, v in model.named_parameters(): v.requires_grad = False model = model.to(device) former_idx = current_idx # -------------------------------- # step 2, denoiser # -------------------------------- if x8: x = util.augment_img_tensor4(x, i % 8) if 'drunet' in model_name: x = torch.cat((x, sigmas[i].float().repeat( 1, 1, x.shape[2], x.shape[3])), dim=1) x = utils_model.test_mode(model, x, mode=2, refield=32, min_size=256, modulo=16) elif 'ircnn' in model_name: x = model(x) if x8: if i % 8 == 3 or i % 8 == 5: x = util.augment_img_tensor4(x, 8 - i % 8) else: x = util.augment_img_tensor4(x, i % 8) # -------------------------------- # (3) img_E # -------------------------------- img_E = util.tensor2uint(x) if n_channels == 1: img_H = img_H.squeeze() if save_E: util.imsave( img_E, os.path.join( E_path, img_name + '_k' + str(k_index) + '_' + model_name + '.png')) # -------------------------------- # (4) img_LEH # -------------------------------- if save_LEH: img_L = util.single2uint(img_L) k_v = k / np.max(k) * 1.0 k_v = util.single2uint(np.tile(k_v[..., np.newaxis], [1, 1, 3])) k_v = cv2.resize(k_v, (3 * k_v.shape[1], 3 * k_v.shape[0]), interpolation=cv2.INTER_NEAREST) img_I = cv2.resize(img_L, (sf * img_L.shape[1], sf * img_L.shape[0]), interpolation=cv2.INTER_NEAREST) img_I[:k_v.shape[0], -k_v.shape[1]:, :] = k_v img_I[:img_L.shape[0], :img_L.shape[1], :] = img_L util.imshow(np.concatenate([img_I, img_E, img_H], axis=1), title='LR / Recovered / Ground-truth' ) if show_img else None util.imsave( np.concatenate([img_I, img_E, img_H], axis=1), os.path.join(E_path, img_name + '_k' + str(k_index) + '_LEH.png')) if save_L: util.imsave( util.single2uint(img_L), os.path.join(E_path, img_name + '_k' + str(k_index) + '_LR.png')) psnr = util.calculate_psnr( img_E, img_H, border=border) # change with your own border test_results['psnr'].append(psnr) logger.info('{:->4d}--> {:>10s} --k:{:>2d} PSNR: {:.2f}dB'.format( idx + 1, img_name + ext, k_index, psnr)) # -------------------------------- # Average PSNR # -------------------------------- ave_psnr = sum(test_results['psnr']) / len(test_results['psnr']) logger.info( '------> Average PSNR of ({}), kernel: ({}) sigma: ({:.2f}): {:.2f} dB' .format(testset_name, k_index, noise_level_model, ave_psnr)) test_results_ave['psnr'].append(ave_psnr)
def main(): # ---------------------------------------- # Preparation # ---------------------------------------- noise_level_img = 0 # default: 0, noise level for LR image noise_level_model = noise_level_img # noise level for model model_name = 'dpsr_x4_gan' # 'dpsr_x2' | 'dpsr_x3' | 'dpsr_x4' | 'dpsr_x4_gan' testset_name = 'set5' # test set, 'set5' | 'srbsd68' need_degradation = True # default: True x8 = False # default: False, x8 to boost performance sf = [int(s) for s in re.findall(r'\d+', model_name)][0] # scale factor show_img = False # default: False task_current = 'sr' # 'dn' for denoising | 'sr' for super-resolution n_channels = 3 # fixed nc = 96 # fixed, number of channels nb = 16 # fixed, number of conv layers model_pool = 'model_zoo' # fixed testsets = 'testsets' # fixed results = 'results' # fixed result_name = testset_name + '_' + model_name border = sf if task_current == 'sr' else 0 # shave boader to calculate PSNR and SSIM model_path = os.path.join(model_pool, model_name + '.pth') # ---------------------------------------- # L_path, E_path, H_path # ---------------------------------------- L_path = os.path.join(testsets, testset_name) # L_path, for Low-quality images H_path = L_path # H_path, for High-quality images E_path = os.path.join(results, result_name) # E_path, for Estimated images util.mkdir(E_path) if H_path == L_path: need_degradation = True logger_name = result_name utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name + '.log')) logger = logging.getLogger(logger_name) need_H = True if H_path is not None else False device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # ---------------------------------------- # load model # ---------------------------------------- from models.network_dpsr import MSRResNet_prior as net model = net(in_nc=n_channels + 1, out_nc=n_channels, nc=nc, nb=nb, upscale=sf, act_mode='R', upsample_mode='pixelshuffle') model.load_state_dict(torch.load(model_path), strict=False) model.eval() for k, v in model.named_parameters(): v.requires_grad = False model = model.to(device) logger.info('Model path: {:s}'.format(model_path)) number_parameters = sum(map(lambda x: x.numel(), model.parameters())) logger.info('Params number: {}'.format(number_parameters)) test_results = OrderedDict() test_results['psnr'] = [] test_results['ssim'] = [] test_results['psnr_y'] = [] test_results['ssim_y'] = [] logger.info('model_name:{}, model sigma:{}, image sigma:{}'.format( model_name, noise_level_img, noise_level_model)) logger.info(L_path) L_paths = util.get_image_paths(L_path) H_paths = util.get_image_paths(H_path) if need_H else None for idx, img in enumerate(L_paths): # ------------------------------------ # (1) img_L # ------------------------------------ img_name, ext = os.path.splitext(os.path.basename(img)) # logger.info('{:->4d}--> {:>10s}'.format(idx+1, img_name+ext)) img_L = util.imread_uint(img, n_channels=n_channels) img_L = util.uint2single(img_L) # degradation process, bicubic downsampling + Gaussian noise if need_degradation: img_L = util.modcrop(img_L, sf) img_L = util.imresize_np(img_L, 1 / sf) np.random.seed(seed=0) # for reproducibility img_L += np.random.normal(0, noise_level_img / 255., img_L.shape) util.imshow(util.single2uint(img_L), title='LR image with noise level {}'.format( noise_level_img)) if show_img else None img_L = util.single2tensor4(img_L) noise_level_map = torch.full((1, 1, img_L.size(2), img_L.size(3)), noise_level_model / 255.).type_as(img_L) img_L = torch.cat((img_L, noise_level_map), dim=1) img_L = img_L.to(device) # ------------------------------------ # (2) img_E # ------------------------------------ if not x8: img_E = model(img_L) else: img_E = utils_model.test_mode(model, img_L, mode=3, sf=sf) img_E = util.tensor2uint(img_E) if need_H: # -------------------------------- # (3) img_H # -------------------------------- img_H = util.imread_uint(H_paths[idx], n_channels=n_channels) img_H = img_H.squeeze() img_H = util.modcrop(img_H, sf) # -------------------------------- # PSNR and SSIM # -------------------------------- psnr = util.calculate_psnr(img_E, img_H, border=border) ssim = util.calculate_ssim(img_E, img_H, border=border) test_results['psnr'].append(psnr) test_results['ssim'].append(ssim) logger.info('{:s} - PSNR: {:.2f} dB; SSIM: {:.4f}.'.format( img_name + ext, psnr, ssim)) util.imshow(np.concatenate([img_E, img_H], axis=1), title='Recovered / Ground-truth') if show_img else None if np.ndim(img_H) == 3: # RGB image img_E_y = util.rgb2ycbcr(img_E, only_y=True) img_H_y = util.rgb2ycbcr(img_H, only_y=True) psnr_y = util.calculate_psnr(img_E_y, img_H_y, border=border) ssim_y = util.calculate_ssim(img_E_y, img_H_y, border=border) test_results['psnr_y'].append(psnr_y) test_results['ssim_y'].append(ssim_y) # ------------------------------------ # save results # ------------------------------------ util.imsave(img_E, os.path.join(E_path, img_name + '.png')) if need_H: ave_psnr = sum(test_results['psnr']) / len(test_results['psnr']) ave_ssim = sum(test_results['ssim']) / len(test_results['ssim']) logger.info( 'Average PSNR/SSIM(RGB) - {} - x{} --PSNR: {:.2f} dB; SSIM: {:.4f}' .format(result_name, sf, ave_psnr, ave_ssim)) if np.ndim(img_H) == 3: ave_psnr_y = sum(test_results['psnr_y']) / len( test_results['psnr_y']) ave_ssim_y = sum(test_results['ssim_y']) / len( test_results['ssim_y']) logger.info( 'Average PSNR/SSIM( Y ) - {} - x{} - PSNR: {:.2f} dB; SSIM: {:.4f}' .format(result_name, sf, ave_psnr_y, ave_ssim_y))
def main(): # ---------------------------------------- # Preparation # ---------------------------------------- model_name = 'usrnet_tiny' # 'usrgan' | 'usrnet' | 'usrgan_tiny' | 'usrnet_tiny' testset_name = 'srcvte' # test set, 'set5' | 'srbsd68' | 'srcvte' test_sf = [ 4 ] # if 'gan' in model_name else [2, 3, 4] # scale factor, from {1,2,3,4} load_kernels = False show_img = False # default: False save_L = False # save LR image save_E = True # save estimated image save_LEH = False # save zoomed LR, E and H images # ---------------------------------------- # load testing kernels # ---------------------------------------- # kernels = hdf5storage.loadmat(os.path.join('kernels', 'kernels.mat'))['kernels'] kernels = loadmat(os.path.join( 'kernels', 'kernels_12.mat'))['kernels'] if load_kernels else None n_channels = 1 if 'gray' in model_name else 3 # 3 for color image, 1 for grayscale image model_pool = '/home/dengzeshuai/pretrained_models/USRnet/' # fixed testsets = '/home/datasets/sr/' # fixed results = 'results' # fixed noise_level_img = 0 # fixed: 0, noise level for LR image noise_level_model = noise_level_img # fixed, noise level of model, default 0 result_name = testset_name + '_' + model_name + '_blur' model_path = os.path.join(model_pool, model_name + '.pth') # ---------------------------------------- # L_path = H_path, E_path, logger # ---------------------------------------- L_path = os.path.join( testsets, testset_name) # L_path and H_path, fixed, for Low-quality images if testset_name == 'srcvte': L_path = os.path.join(testsets, testset_name, 'LR_val') H_path = os.path.join(testsets, testset_name, 'HR_val') video_names = os.listdir(H_path) E_path = os.path.join(results, result_name) # E_path, fixed, for Estimated images util.mkdir(E_path) logger_name = result_name utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name + '.log')) logger = logging.getLogger(logger_name) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # ---------------------------------------- # load model # ---------------------------------------- if 'tiny' in model_name: model = net(n_iter=6, h_nc=32, in_nc=4, out_nc=3, nc=[16, 32, 64, 64], nb=2, act_mode="R", downsample_mode='strideconv', upsample_mode="convtranspose") else: model = net(n_iter=8, h_nc=64, in_nc=4, out_nc=3, nc=[64, 128, 256, 512], nb=2, act_mode="R", downsample_mode='strideconv', upsample_mode="convtranspose") model.load_state_dict(torch.load(model_path), strict=True) model.eval() for key, v in model.named_parameters(): v.requires_grad = False number_parameters = sum(map(lambda x: x.numel(), model.parameters())) model = model.to(device) logger.info('Model path: {:s}'.format(model_path)) logger.info('Params number: {}'.format(number_parameters)) logger.info('Model_name:{}, image sigma:{}'.format(model_name, noise_level_img)) logger.info(L_path) L_paths = util.get_image_paths(L_path) need_H = True if H_path is not None else False H_paths = util.get_image_paths(H_path) if need_H else None # -------------------------------- # read images # -------------------------------- test_results_ave = OrderedDict() test_results_ave['psnr_sf_k'] = [] test_results_ave['ssim_sf_k'] = [] test_results_ave['psnr_y_sf_k'] = [] test_results_ave['ssim_y_sf_k'] = [] for sf in test_sf: loop = kernels.shape[1] if load_kernels else 1 for k_index in range(loop): test_results = OrderedDict() test_results['psnr'] = [] test_results['ssim'] = [] test_results['psnr_y'] = [] test_results['ssim_y'] = [] if load_kernels: kernel = kernels[0, k_index].astype(np.float64) else: ## other kernels # kernel = utils_deblur.blurkernel_synthesis(h=25) # motion kernel kernel = utils_deblur.fspecial('gaussian', 25, 1.6) # Gaussian kernel kernel = sr.shift_pixel(kernel, sf) # pixel shift; optional kernel /= np.sum(kernel) util.surf(kernel) if show_img else None # idx = 0 for idx, img in enumerate(L_paths): # -------------------------------- # (1) classical degradation, img_L # -------------------------------- img_name, ext = os.path.splitext(os.path.basename(img)) if testset_name == 'srcvte': video_name = os.path.basename(os.path.dirname(img)) img_L = util.imread_uint(img, n_channels=n_channels) img_L = util.uint2single(img_L) # generate degraded LR image # img_L = ndimage.filters.convolve(img_H, kernel[..., np.newaxis], mode='wrap') # blur # img_L = sr.downsample_np(img_L, sf, center=False) # downsample, standard s-fold downsampler # img_L = util.uint2single(img_L) # uint2single # np.random.seed(seed=0) # for reproducibility # img_L += np.random.normal(0, noise_level_img, img_L.shape) # add AWGN util.imshow(util.single2uint(img_L)) if show_img else None x = util.single2tensor4(img_L) k = util.single2tensor4(kernel[..., np.newaxis]) sigma = torch.tensor(noise_level_model).float().view( [1, 1, 1, 1]) [x, k, sigma] = [el.to(device) for el in [x, k, sigma]] # -------------------------------- # (2) inference # -------------------------------- x = model(x, k, sf, sigma) # -------------------------------- # (3) img_E # -------------------------------- img_E = util.tensor2uint(x) if save_E: if testset_name == 'srcvte': save_path = os.path.join(E_path, video_name) util.mkdir(save_path) # util.imsave(img_E, os.path.join(save_path, img_name+'_k'+str(k_index+1)+'.png')) util.imsave(img_E, os.path.join(save_path, img_name + '.png')) else: util.imsave( img_E, os.path.join( E_path, img_name + '_x' + str(sf) + '_k' + str(k_index + 1) + '_' + model_name + '.png')) # -------------------------------- # (4) img_H # -------------------------------- if need_H: img_H = util.imread_uint(H_paths[idx], n_channels=n_channels) img_H = img_H.squeeze() img_H = util.modcrop(img_H, sf) psnr = util.calculate_psnr( img_E, img_H, border=sf) # change with your own border ssim = util.calculate_ssim(img_E, img_H, border=sf) test_results['psnr'].append(psnr) test_results['ssim'].append(ssim) if np.ndim(img_H) == 3: # RGB image img_E_y = util.rgb2ycbcr(img_E, only_y=True) img_H_y = util.rgb2ycbcr(img_H, only_y=True) psnr_y = util.calculate_psnr(img_E_y, img_H_y, border=sf) ssim_y = util.calculate_ssim(img_E_y, img_H_y, border=sf) test_results['psnr_y'].append(psnr_y) test_results['ssim_y'].append(ssim_y) logger.info( '{:->4d} --> {:>4s}--> {:>10s} -- x{:>2d} --k{:>2d} PSNR: {:.2f}dB SSIM: {:.4f}' .format(idx, video_name, img_name + ext, sf, k_index, psnr_y, ssim_y)) else: logger.info( '{:->4d} --> {:>4s}--> {:>10s} -- x{:>2d} --k{:>2d} PSNR: {:.2f}dB SSIM: {:.4f}' .format(idx, video_name, img_name + ext, sf, k_index, psnr, ssim)) if need_H: ave_psnr = sum(test_results['psnr']) / len( test_results['psnr']) ave_ssim = sum(test_results['ssim']) / len( test_results['ssim']) logger.info( 'Average PSNR/SSIM(RGB) - {} - x{} --PSNR: {:.2f} dB; SSIM: {:.4f}' .format(result_name, sf, ave_psnr, ave_ssim)) logger.info( '------> Average PSNR(RGB) - {} - x{}, kernel:{} sigma:{} --PSNR: {:.2f} dB; SSIM: {:.4f}' .format(testset_name, sf, k_index + 1, noise_level_model, ave_psnr, ave_ssim)) if np.ndim(img_H) == 3: ave_psnr_y = sum(test_results['psnr_y']) / len( test_results['psnr_y']) ave_ssim_y = sum(test_results['ssim_y']) / len( test_results['ssim_y']) logger.info( '------> Average PSNR(Y) - {} - x{}, kernel:{} sigma:{} --PSNR: {:.2f} dB; SSIM: {:.4f}' .format(testset_name, sf, k_index + 1, noise_level_model, ave_psnr_y, ave_ssim_y)) test_results_ave['psnr_sf_k'].append(ave_psnr) test_results_ave['ssim_sf_k'].append(ave_ssim) if np.ndim(img_H) == 3: test_results_ave['psnr_y_sf_k'].append(ave_psnr_y) test_results_ave['ssim_y_sf_k'].append(ave_ssim_y) logger.info(test_results_ave['psnr_sf_k']) logger.info(test_results_ave['ssim_sf_k']) if np.ndim(img_H) == 3: logger.info(test_results_ave['psnr_y_sf_k']) logger.info(test_results_ave['ssim_y_sf_k'])