plt.show() #%% plt.scatter(codes_all[3500, :], codes_all[4000, :]) plt.show() #%% plt.figure(figsize=[8, 10]) plt.pcolor(codes_all.transpose()) plt.xlabel("Image id by generation") plt.ylabel("code_entry") plt.show() #%% exp_dir = r"D:\Generator_DB_Windows\data\with_CNN" this_exp_dir = os.path.join(exp_dir, "purenoise") trial_title = 'choleskycma_sgm3_uf10_cc%.2f_cs%.2f' % (0.00097, 0.0499) trialdir = add_trial_subdir(this_exp_dir, trial_title) #%% def scores_imgname_summary(trialdir, savefile=True): """ """ if "scores_all.npz" in os.listdir(trialdir): # if the summary table exist, just read from it! with np.load(os.path.join(trialdir, "scores_all.npz")) as data: scores = data["scores"] generations = data["generations"] image_ids = data["image_ids"] return scores, image_ids, generations scorefns = sorted([ fn for fn in os.listdir(trialdir)
from CNNScorer import NoIOCNNScorer import utils from utils import add_neuron_subdir, add_trial_subdir, generator, simplex_interpolate from sklearn.manifold import LocallyLinearEmbedding, MDS from mpl_toolkits.mplot3d import Axes3D import importlib importlib.reload(utils) #%% exp_dir = "/home/poncelab/Documents/data/with_CNN/" neuron = ('caffe-net', 'fc6', 10) this_exp_dir = add_neuron_subdir(neuron, exp_dir) trial_title = 'choleskycma_sgm3_uf10_trial%d' % 3 trialdir = add_trial_subdir(this_exp_dir, trial_title) TestScorer = NoIOCNNScorer(target_neuron=neuron, writedir=this_exp_dir) TestScorer.load_classifier() #%% Title: Prepare the high level code set exp_dir = "/home/poncelab/Documents/data/with_CNN/" neuron = ('caffe-net', 'fc6', 10) this_exp_dir = add_neuron_subdir(neuron, exp_dir) code_total_list = [] score_total_list = [] trial_list = [ 'choleskycma_sgm1_trial0', 'choleskycma_sgm1_trial1', 'choleskycma_sgm1_trial2', 'choleskycma_sgm1_uf3_trial0', 'choleskycma_sgm1_uf3_trial1', 'choleskycma_sgm1_uf3_trial2', 'choleskycma_sgm3_trial0', 'choleskycma_sgm3_trial1',