예제 #1
0
def train(args=None, param_path=None, **kw):
    if args is None:
        args = kw.get('args')

    if param_path is None:
        if args.param_path is not None:
            param_path = args.param_path
        else:
            param_path = './params/'
        #sys.path.append(param_path)

    model_dict, optimizer_dict, trainer_dict, data_loader_dict = get_param_dicts(
        args)

    trainer = build_trainer(trainer_dict)
    data_loader = build_data_loader(data_loader_dict)
    trainer.bind_data_loader(data_loader)
    # model can be RSLP, RMLP, RCNN ...
    model = build_model(model_dict)
    # optimizer can be BP, TP or CHL optimizer.
    optimizer = build_optimizer(optimizer_dict)
    optimizer.bind_model(model)
    optimizer.bind_trainer(trainer)
    trainer.bind_model(model)
    trainer.bind_optimizer(optimizer)

    trainer.train(
    )  # the model needs some data from data_loader to get response properties.
    model.analyze(data_loader=data_loader)
예제 #2
0
def main(args):
    this_dir = osp.join(osp.dirname(__file__), '.')
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    data_loader = utl.build_data_loader(args, 'extract')

    model = build_model(args).to(device)
    model.load_state_dict(torch.load(args.checkpoint))
    model.train(False)

    with torch.set_grad_enabled(False):
        for batch_idx, (data, air_target, bed_target,
                        save_path) in enumerate(data_loader):
            print('{:3.3f}%'.format(100.0 * batch_idx / len(data_loader)))
            batch_size = data.shape[0]
            data = data.to(device)
            air_feature, bed_feature = model.features(data)
            air_feature = air_feature.to('cpu').numpy()
            bed_feature = bed_feature.to('cpu').numpy()
            for bs in range(batch_size):
                if not osp.isdir(osp.dirname(save_path[bs])):
                    os.makedirs(osp.dirname(save_path[bs]))
                np.save(
                    save_path[bs],
                    np.concatenate((air_feature[bs], bed_feature[bs]), axis=0))
예제 #3
0
def main(args):
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    utl.set_seed(int(args.seed))

    model = VideoModel(args.hidden_size).to(device)

    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(),
                           lr=args.lr,
                           weight_decay=args.weight_decay)

    for epoch in range(args.epochs):
        data_loaders = {
            phase: utl.build_data_loader(args, phase)
            for phase in args.phases
        }

        for phase in args.phases:
            training = phase == 'train'
            if training:
                model.train(True)
            elif not training and args.debug:
                model.train(False)
            else:
                continue

            with torch.set_grad_enabled(training):
                avg_loss = 0
                for batch_idx, (camera_inputs, motion_inputs, enc_target, dec_target) \
                        in enumerate(data_loaders[phase], start=1):
                    camera_inputs = camera_inputs.to(device)
                    enc_target = enc_target.to(device)

                    if training:
                        optimizer.zero_grad()

                    scores = model(camera_inputs)

                    # sum losses along all timesteps
                    loss = criterion(scores[:, 0],
                                     enc_target[:, 0].max(axis=1)[1])
                    for step in range(1, camera_inputs.shape[1]):
                        loss += criterion(scores[:, step],
                                          enc_target[:, step].max(axis=1)[1])

                    if training:
                        loss.backward()
                        optimizer.step()

                    avg_loss += loss.item()
                    print('{:5s} Epoch:{}  Iteration:{}  Loss:{:.3f}'.format(
                        phase, epoch + 1, batch_idx, loss.item()))

                print('-- {:5s} Epoch:{} avg_loss:{:.3f}'.format(
                    phase, epoch + 1, avg_loss / batch_idx))
예제 #4
0
파일: main.py 프로젝트: cscihkbu/CATSI
    def impute_test_set(self, data_set, batch_size=None):
        batch_size = batch_size or self.eval_batch_size
        data_iter = build_data_loader(data_set,
                                      self.device,
                                      batch_size,
                                      False,
                                      testing=True)
        self.model.eval()

        out_dir = self.out_path / 'imputations_test_set'
        out_dir.mkdir()

        imp_dfs = []
        pbar = tqdm.tqdm(desc='Generating imputation', total=len(data_iter))
        for idx, data in enumerate(data_iter):
            missing_masks = 1 - data['masks']
            ret = self.model(data)
            imputation = ret['imputations']

            pids = data['pids']
            imp_df = pd.DataFrame(missing_masks.nonzero().data.cpu().numpy(),
                                  columns=['pid', 'tid', 'colid'])
            imp_df['pid'] = imp_df['pid'].map(
                {i: pid
                 for i, pid in enumerate(pids)})
            imp_df['analyte'] = imp_df['colid'].map(self.var_names_dict)
            imp_df['imputation'] = imputation[missing_masks ==
                                              1].data.cpu().numpy()
            imp_dfs.append(imp_df)

            for p in range(len(pids)):
                seq_len = data['lengths'][p]
                time_stamps = data['time_stamps'][p, :seq_len].unsqueeze(1)
                imp = imputation[p, :seq_len, :]
                df = pd.DataFrame(torch.cat([time_stamps, imp],
                                            dim=1).data.cpu().numpy(),
                                  columns=['CHARTTIME'] + self.var_names)
                df['CHARTTIME'] = df['CHARTTIME'].apply(np.int)
                df.to_csv(out_dir / f'{pids[p]}.csv', index=False)
            pbar.update()
        pbar.close()
        print(f'Done, results saved in:\n {out_dir.resolve()}')
        return imp_dfs
예제 #5
0
def main(args):
    this_dir = osp.join(osp.dirname(__file__), '.')
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    data_loaders = {
        phase: utl.build_data_loader(args, phase)
        for phase in args.phases
    }

    model = build_model(args).apply(utl.weights_init).to(device)
    air_criterion = nn.L1Loss().to(device)
    bed_criterion = nn.L1Loss().to(device)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    for epoch in range(1, args.epochs + 1):
        # Learning rate scheduler
        if epoch == 5 or epoch % 10 == 0:
            args.lr = args.lr * 0.4
            for param_group in optimizer.param_groups:
                param_group['lr'] = args.lr

        air_errors = {phase: 0.0 for phase in args.phases}
        bed_errors = {phase: 0.0 for phase in args.phases}

        start = time.time()
        for phase in args.phases:
            training = phase == 'train'
            if training:
                model.train(True)
            else:
                if epoch % args.test_interval == 0:
                    model.train(False)
                else:
                    continue

            with torch.set_grad_enabled(training):
                for batch_idx, (data, init, air_target,
                                bed_target) in enumerate(data_loaders[phase]):
                    batch_size = data.shape[0]
                    data = data.to(device)
                    init = init.to(device)
                    air_target = air_target.to(device)
                    bed_target = bed_target.to(device)

                    air_output, bed_output = model(data, init)
                    air_loss = air_criterion(air_output, air_target)
                    bed_loss = bed_criterion(bed_output, bed_target)
                    air_errors[phase] += air_loss.item() * batch_size
                    bed_errors[phase] += bed_loss.item() * batch_size
                    if args.debug:
                        print(air_loss.item(), bed_loss.item())

                    if training:
                        optimizer.zero_grad()
                        loss = air_loss + bed_loss
                        loss.backward()
                        optimizer.step()
        end = time.time()

        if epoch % args.test_interval == 0:
            snapshot_path = osp.join(this_dir, 'snapshots')
            if not os.path.isdir(snapshot_path):
                os.makedirs(snapshot_path)
            snapshot_name = 'epoch-{}-air-{}-bed-{}.pth'.format(
                epoch,
                float(
                    "{:.2f}".format(air_errors['test'] /
                                    len(data_loaders['test'].dataset) * 412)),
                float(
                    "{:.2f}".format(bed_errors['test'] /
                                    len(data_loaders['test'].dataset) * 412)),
            )
            torch.save(model.state_dict(),
                       os.path.join(snapshot_path, snapshot_name))

        print(
            'Epoch {:2} | '
            'train loss (air): {:4.2f} (bed): {:4.2f} | '
            'test loss (air): {:4.2f} (bed): {:4.2f} | '
            'running time: {:.2f} sec'.format(
                epoch,
                air_errors['train'] / len(data_loaders['train'].dataset) * 412,
                bed_errors['train'] / len(data_loaders['train'].dataset) * 412,
                air_errors['test'] / len(data_loaders['test'].dataset) * 412,
                bed_errors['test'] / len(data_loaders['test'].dataset) * 412,
                end - start,
            ))
예제 #6
0
def main(args):
    this_dir = osp.join(osp.dirname(__file__), '.')
    save_dir = osp.join(this_dir, 'checkpoints')
    if not osp.isdir(save_dir):
        os.makedirs(save_dir)
    command = 'python ' + ' '.join(sys.argv)
    logger = utl.setup_logger(osp.join(this_dir, 'log.txt'), command=command)
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    utl.set_seed(int(args.seed))

    model = build_model(args)
    if osp.isfile(args.checkpoint):
        checkpoint = torch.load(args.checkpoint,
                                map_location=torch.device('cpu'))
        model.load_state_dict(checkpoint['model_state_dict'])
    else:
        model.apply(utl.weights_init)
    if args.distributed:
        model = nn.DataParallel(model)
    model = model.to(device)

    criterion = utl.MultiCrossEntropyLoss(ignore_index=21).to(device)
    optimizer = optim.Adam(model.parameters(),
                           lr=args.lr,
                           weight_decay=args.weight_decay)
    if osp.isfile(args.checkpoint):
        optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
        for param_group in optimizer.param_groups:
            param_group['lr'] = args.lr
        args.start_epoch += checkpoint['epoch']
    softmax = nn.Softmax(dim=1).to(device)

    for epoch in range(args.start_epoch, args.start_epoch + args.epochs):
        if epoch == 21:
            args.lr = args.lr * 0.1
            for param_group in optimizer.param_groups:
                param_group['lr'] = args.lr

        data_loaders = {
            phase: utl.build_data_loader(args, phase)
            for phase in args.phases
        }

        enc_losses = {phase: 0.0 for phase in args.phases}
        enc_score_metrics = []
        enc_target_metrics = []
        enc_mAP = 0.0
        dec_losses = {phase: 0.0 for phase in args.phases}
        dec_score_metrics = []
        dec_target_metrics = []
        dec_mAP = 0.0

        start = time.time()
        for phase in args.phases:
            training = phase == 'train'
            if training:
                model.train(True)
            elif not training and args.debug:
                model.train(False)
            else:
                continue

            with torch.set_grad_enabled(training):
                for batch_idx, (camera_inputs, motion_inputs, enc_target, dec_target) \
                        in enumerate(data_loaders[phase], start=1):
                    batch_size = camera_inputs.shape[0]
                    camera_inputs = camera_inputs.to(device)
                    motion_inputs = motion_inputs.to(device)
                    enc_target = enc_target.to(device).view(
                        -1, args.num_classes)
                    dec_target = dec_target.to(device).view(
                        -1, args.num_classes)

                    enc_score, dec_score = model(camera_inputs, motion_inputs)
                    enc_loss = criterion(enc_score, enc_target)
                    dec_loss = criterion(dec_score, dec_target)
                    enc_losses[phase] += enc_loss.item() * batch_size
                    dec_losses[phase] += dec_loss.item() * batch_size
                    if args.verbose:
                        print(
                            'Epoch: {:2} | iteration: {:3} | enc_loss: {:.5f} dec_loss: {:.5f}'
                            .format(epoch, batch_idx, enc_loss.item(),
                                    dec_loss.item()))

                    if training:
                        optimizer.zero_grad()
                        loss = enc_loss + dec_loss
                        loss.backward()
                        optimizer.step()
                    else:
                        # Prepare metrics for encoder
                        enc_score = softmax(enc_score).cpu().numpy()
                        enc_target = enc_target.cpu().numpy()
                        enc_score_metrics.extend(enc_score)
                        enc_target_metrics.extend(enc_target)
                        # Prepare metrics for decoder
                        dec_score = softmax(dec_score).cpu().numpy()
                        dec_target = dec_target.cpu().numpy()
                        dec_score_metrics.extend(dec_score)
                        dec_target_metrics.extend(dec_target)
        end = time.time()

        if args.debug:
            result_file = 'inputs-{}-epoch-{}.json'.format(args.inputs, epoch)
            # Compute result for encoder
            enc_mAP = utl.compute_result_multilabel(
                args.class_index,
                enc_score_metrics,
                enc_target_metrics,
                save_dir,
                result_file,
                ignore_class=[0, 21],
                save=True,
            )
            # Compute result for decoder
            dec_mAP = utl.compute_result_multilabel(
                args.class_index,
                dec_score_metrics,
                dec_target_metrics,
                save_dir,
                result_file,
                ignore_class=[0, 21],
                save=False,
            )

        # Output result
        logger.output(epoch,
                      enc_losses,
                      dec_losses,
                      len(data_loaders['train'].dataset),
                      len(data_loaders['test'].dataset),
                      enc_mAP,
                      dec_mAP,
                      end - start,
                      debug=args.debug)

        # Save model
        checkpoint_file = 'inputs-{}-epoch-{}.pth'.format(args.inputs, epoch)
        torch.save(
            {
                'epoch':
                epoch,
                'model_state_dict':
                model.module.state_dict()
                if args.distributed else model.state_dict(),
                'optimizer_state_dict':
                optimizer.state_dict(),
            }, osp.join(save_dir, checkpoint_file))
예제 #7
0
def k_fold():
    images, masks = load_train_data(TRAIN_IMAGES_PATH, TRAIN_MASKS_PATH)
    test_file_paths, test_images = load_test_data(TEST_IMAGES_PATH,
                                                  load_images=True,
                                                  to256=False)

    train_transformer = transforms.Compose([
        CropAugmenter(),
        AffineAugmenter(),
        MasksAdder(),
        ToTensor(),
        Normalize(),
        ClassAdder()
    ])

    eval_transformer = transforms.Compose(
        [MasksAdder(), ToTensor(),
         Normalize(), ClassAdder()])

    predict_transformer = transforms.Compose(
        [ToTensor(predict=True),
         Normalize(predict=True)])

    test_images_loader = build_data_loader(test_images,
                                           None,
                                           predict_transformer,
                                           batch_size=BATCH_SIZE,
                                           shuffle=False,
                                           num_workers=4,
                                           predict=True)

    k_fold = KFold(n_splits=FOLDS, random_state=RANDOM_SEED, shuffle=True)

    test_masks_folds = []

    config = AttrDict({
        'cuda_index': CUDA_ID,
        'momentum': MOMENTUM,
        'lr': LR,
        'tune_lr': TUNE_LR,
        'min_lr': MIN_LR,
        'bce_epochs': BCE_EPOCHS,
        'intermediate_epochs': INTERMEDIATE_EPOCHS,
        'cycle_length': CYCLE_LENGTH,
        'logs_dir': LOGS_DIR,
        'masks_weight': MASKS_WEIGHT,
        'class_weight': CLASS_WEIGHT,
        'val_metric_criterion': 'comp_metric'
    })

    for index, (train_index,
                valid_index) in list(enumerate(k_fold.split(images))):
        print('fold_{}\n'.format(index))

        x_train_fold, x_valid = images[train_index], images[valid_index]
        y_train_fold, y_valid = masks[train_index], masks[valid_index]

        train_data_loader = build_data_loader(x_train_fold,
                                              y_train_fold,
                                              train_transformer,
                                              batch_size=BATCH_SIZE,
                                              shuffle=True,
                                              num_workers=4,
                                              predict=False)
        val_data_loader = build_data_loader(x_valid,
                                            y_valid,
                                            eval_transformer,
                                            batch_size=BATCH_SIZE,
                                            shuffle=False,
                                            num_workers=4,
                                            predict=False)
        test_data_loader = build_data_loader(x_valid,
                                             y_valid,
                                             eval_transformer,
                                             batch_size=BATCH_SIZE,
                                             shuffle=False,
                                             num_workers=4,
                                             predict=False)

        data_loaders = AttrDict({
            'train': train_data_loader,
            'val': val_data_loader,
            'test': test_data_loader
        })

        zers = np.zeros(BCE_EPOCHS)
        zers += 0.1
        lovasz_ratios = np.linspace(0.1, 0.9, INTERMEDIATE_EPOCHS)
        lovasz_ratios = np.hstack((zers, lovasz_ratios))
        bce_ratios = 1.0 - lovasz_ratios
        loss_weights = [
            (bce_ratio, lovasz_ratio)
            for bce_ratio, lovasz_ratio in zip(bce_ratios, lovasz_ratios)
        ]

        loss = LossAggregator((nn.BCEWithLogitsLoss(), LovaszLoss()),
                              weights=[0.9, 0.1])

        metrics = {
            'binary_accuracy': BinaryAccuracy,
            'dice_coefficient': DiceCoefficient,
            'comp_metric': CompMetric
        }

        segmentor = SawSeenNet(base_channels=64, pretrained=True,
                               frozen=False).cuda(config.cuda_index)

        trainer = Trainer(config=config,
                          model=segmentor,
                          loss=loss,
                          loss_weights=loss_weights,
                          metrics=metrics,
                          data_loaders=data_loaders)

        segmentor = trainer.train(num_epochs=NUM_EPOCHS,
                                  model_pattern=MODEL_FILE_PATH +
                                  '_{}_fold.pth'.format(index))

        test_masks = predict(config,
                             segmentor,
                             test_images_loader,
                             thresholding=False)
        test_masks = trim_masks(test_masks,
                                height=IMG_SIZE_ORIGIN,
                                width=IMG_SIZE_ORIGIN)

        test_masks_folds.append(test_masks)

        np.save(FOLDS_FILE_PATH.format(index), test_masks)

    result_masks = np.zeros_like(test_masks_folds[0])

    for test_masks in test_masks_folds:
        result_masks += test_masks

    result_masks = result_masks.astype(dtype=np.float32)
    result_masks /= FOLDS
    result_masks = result_masks > THRESHOLD

    return test_file_paths, result_masks
예제 #8
0
파일: main.py 프로젝트: cscihkbu/CATSI
    def fit(self,
            epochs=300,
            batch_size=64,
            eval_batch_size=64,
            eval_epoch=1,
            record_imp_epoch=50):
        # construct optimizer
        context_rnn_params = {
            'params': self.model.context_rnn.parameters(),
            'lr': 1e-3,
            'weight_decay': 5e-3
        }
        imp_rnn_params = {
            'params': [
                p[1] for p in self.model.named_parameters()
                if p[0].split('.')[0] != 'context_rnn'
            ],
            'lr':
            1e-3,
            'weight_decay':
            5e-5
        }

        optimizer = optim.Adam([context_rnn_params, imp_rnn_params])

        train_iter = build_data_loader(self.train_set,
                                       self.device,
                                       batch_size,
                                       shuffle=True)
        valid_iter = build_data_loader(self.valid_set,
                                       self.device,
                                       eval_batch_size,
                                       shuffle=True)
        self.eval_batch_size = eval_batch_size

        imp_dfs_train = None
        imp_dfs_valid = None
        for epoch in range(epochs):
            self.model.train()

            pbar_desc = f'Epoch {epoch+1}: '

            pbar = tqdm.tqdm(total=len(train_iter), desc=pbar_desc)
            total_loss = AverageMeter()
            total_loss_eval = AverageMeter()
            verbose_loss = [AverageMeter() for _ in range(6)]
            for idx, data in enumerate(train_iter):

                optimizer.zero_grad()
                ret = self.model(data)
                clip_grad_norm_(self.model.parameters(), 1)
                ret['loss'].backward()
                optimizer.step()

                total_loss.update(ret['loss'].item(), ret['loss_count'].item())
                total_loss_eval.update(ret['loss_eval'].item(),
                                       ret['loss_eval_count'].item())
                for i, (k, v, c) in enumerate(ret['verbose_loss']):
                    verbose_loss[i].update(v.item(), c)

                pbar.set_description(pbar_desc +
                                     f'Training loss={total_loss.avg:.3e}')
                pbar.update()
            pbar_desc = f'Epoch {epoch + 1} done, Training loss={total_loss.avg:.3e}'
            pbar.set_description(pbar_desc)
            pbar.close()

            if (epoch + 1) % eval_epoch == 0:
                self.evaluate(valid_iter)

            if record_imp_epoch and (epoch + 1) % record_imp_epoch == 0:
                if imp_dfs_train is None:
                    imp_dfs_train = self.retrieve_imputation(
                        train_iter, epoch + 1)
                else:
                    imp_dfs_train = pd.concat([
                        imp_dfs_train,
                        self.retrieve_imputation(train_iter, epoch + 1)
                    ],
                                              axis=0)
                if imp_dfs_valid is None:
                    imp_dfs_valid = self.retrieve_imputation(
                        valid_iter, epoch + 1)
                else:
                    imp_dfs_valid = pd.concat([
                        imp_dfs_valid,
                        self.retrieve_imputation(valid_iter, epoch + 1)
                    ],
                                              axis=0)

                imp_dfs_train.to_excel(self.out_path / 'imp_train.xlsx',
                                       merge_cells=False)
                imp_dfs_valid.to_excel(self.out_path / 'imp_valid.xlsx',
                                       merge_cells=False)

        print(
            'Training is done, performing final evaluation on validation set...'
        )

        loss_valid, mae, mre, nrmsd = self.evaluate(valid_iter)
        with open(self.out_path / 'final_eval.csv', 'w') as txtfile:
            txtfile.write(f'Metrics, ' + (', '.join(self.var_names)) + '\n')
            txtfile.write(f'MAE, ' + (', '.join([f'{x:.3f}'
                                                 for x in mae])) + '\n')
            txtfile.write(f'MRE, ' + (', '.join([f'{x:.3f}'
                                                 for x in mre])) + '\n')
            txtfile.write(f'nRMSD, ' + (', '.join([f'{x:.3f}'
                                                   for x in nrmsd])) + '\n')