예제 #1
0
 def plot_data(self, step, handle=None):
     if handle is None:
         handle = self.validation_handle
     plot_subdir = self.plot_dir + str(step) + "/"
     checkFolders([self.plot_dir, plot_subdir])
     fd = {
         self.dataset_handle: handle,
         self.z: np.zeros([self.batch_size, self.z_dim]),
         self.training: False,
         self.kl_wt: self.kl_weight
     }
     in_data, msoln, pred = self.sess.run(
         [self.data, self.masked_soln, self.masked_pred], feed_dict=fd)
     data, mesh, soln = in_data
     for n in range(0, self.batch_size):
         soln_name = 'soln_' + str(n) + '.npy'
         data_name = 'data_' + str(n) + '.npy'
         mesh_name = 'mesh_' + str(n) + '.npy'
         msoln_name = 'msoln_' + str(n) + '.npy'
         pred_name = 'pred_' + str(n) + '.npy'
         np.save(os.path.join(plot_subdir, soln_name), soln[n, :, :, 0])
         np.save(os.path.join(plot_subdir, data_name), data[n, :, :, 0])
         np.save(os.path.join(plot_subdir, mesh_name), mesh[n, :, :, 0])
         np.save(os.path.join(plot_subdir, msoln_name), msoln[n, :, :, 0])
         np.save(os.path.join(plot_subdir, pred_name), pred[n, :, :, 0])
예제 #2
0
 def plot_predictions(self, step):
     plot_subdir = self.plot_dir + str(step) + "/"
     checkFolders([self.plot_dir, plot_subdir])
     resized_imgs = self.predict(random_samples=True)
     for n in range(0, self.batch_size):
         plot_name = 'plot_' + str(n) + '.png'
         plt.imsave(os.path.join(plot_subdir, plot_name), resized_imgs[n,:,:,0], cmap='gray')
예제 #3
0
 def plot_comparisons(self, step):
     plot_subdir = self.plot_dir + str(step) + "/"
     checkFolders([self.plot_dir, plot_subdir])
     soln, pred = self.predict()
     for n in range(0, self.batch_size):
         soln_name = 'soln_' + str(n) + '.npy'; pred_name = 'pred_' + str(n) + '.npy'
         np.save(os.path.join(plot_subdir, soln_name), soln[n,:,:,0])
         np.save(os.path.join(plot_subdir, pred_name), pred[n,:,:,0])
예제 #4
0
 def plot_comparisons(self, step):
     plot_subdir = self.plot_dir + str(step) + "/"
     checkFolders([self.plot_dir, plot_subdir])
     resized_data, resized_pred = self.predict()
     for n in range(0, self.batch_size):
         data_name = 'data_' + str(n) + '.png'; pred_name = 'pred_' + str(n) + '.png'
         plt.imsave(os.path.join(plot_subdir, data_name), resized_data[n,:,:,0], cmap='gray')
         plt.imsave(os.path.join(plot_subdir, pred_name), resized_pred[n,:,:,0], cmap='gray')