예제 #1
0
def q3_ibis(table, input_for_validation, debug_mode):
    t_query = 0
    t0 = timer()
    q3_output_ibis = (  # noqa: F841 (assigned, but unused. Used in commented code.)
        table.groupby(
            [table.passenger_count, table.pickup_datetime.year().name("pickup_datetime")]
        )
        .aggregate(count=table.passenger_count.count())
        .execute()
    )
    t_query += timer() - t0

    if input_for_validation is not None:
        print("Validating query 3 results ...")

        q3_output_pd = input_for_validation["Query3"]
        # Casting of Pandas q3 output to Pandas.DataFrame type, which is compartible with
        # Ibis q3 output
        q3_output_pd_casted = pd.DataFrame(
            {
                "passenger_count": q3_output_pd["passenger_count"],
                "pickup_datetime": q3_output_pd["pickup_datetime"],
                "count": q3_output_pd[0],
            }
        )

        compare_dataframes(
            ibis_dfs=[q3_output_pd_casted], pandas_dfs=[q3_output_ibis], sort_cols=[], drop_cols=[]
        )

        # Query result extraction for comparison with SQL version query
        if debug_mode:
            q3_output_pd_casted.to_csv("./q3_pd_result.csv", index=False)

    return t_query
예제 #2
0
def q1_ibis(table, input_for_validation, debug_mode):
    t_query = 0
    t0 = timer()
    q1_output_ibis = (  # noqa: F841 (assigned, but unused. Used in commented code.)
        table.groupby("cab_type").count().sort_by("cab_type")["cab_type", "count"].execute()
    )
    t_query += timer() - t0

    if input_for_validation:
        print("Validating query 1 results ...")

        q1_output_pd = input_for_validation["Query1"]

        # Casting of Pandas q1 output to Pandas.DataFrame type, which is compartible with
        # Ibis q1 output
        q1_output_pd_data = {
            q1_output_pd.name: q1_output_pd.index.to_numpy(),
            "count": q1_output_pd.to_numpy(),
        }
        q1_output_pd_df = pd.DataFrame(q1_output_pd_data, columns=[q1_output_pd.name, "count"])
        q1_output_pd_df = q1_output_pd_df.astype({"cab_type": "category"}, copy=False)

        compare_dataframes(
            ibis_dfs=[q1_output_pd_df], pandas_dfs=[q1_output_ibis], sort_cols=[], drop_cols=[]
        )

        # Query result extraction for comparison with SQL version query
        if debug_mode:
            q1_output_pd.to_csv("./q1_pd_result.csv")

    return t_query
예제 #3
0
def q4_ibis(table, input_for_validation, debug_mode):
    t_query = 0
    t0 = timer()
    q4_ibis_sized = table.groupby(
        [
            table.passenger_count,
            table.pickup_datetime.year().name("pickup_datetime"),
            table.trip_distance.cast("int64").name("trip_distance"),
        ]
    ).size()
    q4_output_ibis = (
        q4_ibis_sized.sort_by(  # noqa: F841 (assigned, but unused. Used in commented code.)
            [("pickup_datetime", True), ("count", False)]
        ).execute()
    )
    t_query += timer() - t0

    if input_for_validation is not None:
        print("Validating query 4 results ...")

        q4_output_pd = input_for_validation["Query4"]

        # Casting of Pandas q4 output to Pandas.DataFrame type, which is compartible with
        # Ibis q4 output
        q4_output_ibis_casted = q4_output_ibis.sort_values(
            by=["passenger_count", "pickup_datetime", "trip_distance", "count"],
            ascending=[True, True, True, True],
        )
        q4_output_pd_casted = q4_output_pd.sort_values(
            by=["passenger_count", "pickup_datetime", "trip_distance", 0],
            ascending=[True, True, True, True],
        )
        q4_output_pd_casted.columns = [
            "passenger_count",
            "pickup_datetime",
            "trip_distance",
            "count",
        ]

        compare_dataframes(
            ibis_dfs=[q4_output_ibis_casted],
            pandas_dfs=[q4_output_pd_casted],
            sort_cols=[],
            drop_cols=[],
        )

        # Query result extraction for comparison with SQL version query
        if debug_mode:
            q4_output_pd.to_csv("./q4_pd_result.csv", index=False)
            q4_output_pd_casted.to_csv("./q4_pd_result_sorted.csv", index=False)

    return t_query
예제 #4
0
def q2_ibis(table, input_for_validation, debug_mode):
    t_query = 0
    t0 = timer()
    q2_output_ibis = (  # noqa: F841 (assigned, but unused. Used in commented code.)
        table.groupby("passenger_count")
        .aggregate(total_amount=table.total_amount.mean())[["passenger_count", "total_amount"]]
        .execute()
    )
    t_query += timer() - t0

    if input_for_validation is not None:
        print("Validating query 2 results ...")

        q2_output_pd = input_for_validation["Query2"]

        compare_dataframes(
            ibis_dfs=[q2_output_pd], pandas_dfs=[q2_output_ibis], sort_cols=[], drop_cols=[]
        )

        # Query result extraction for comparison with SQL version query
        if debug_mode:
            q2_output_pd.to_csv("./q2_pd_result.csv", index=False)

    return t_query
예제 #5
0
def run_benchmark(parameters):

    ignored_parameters = {
        "dfiles_num": parameters["dfiles_num"],
        "gpu_memory": parameters["gpu_memory"],
    }
    warnings.warn(f"Parameters {ignored_parameters} are irnored",
                  RuntimeWarning)

    parameters["data_file"] = parameters["data_file"].replace("'", "")

    etl_times_ibis = None
    etl_times = None
    ml_times_ibis = None
    ml_times = None

    var_cols = ["var_%s" % i for i in range(200)]
    count_cols = ["var_%s_count" % i for i in range(200)]
    gt1_cols = ["var_%s_gt1" % i for i in range(200)]
    columns_names = ["ID_code", "target"] + var_cols
    columns_types_pd = ["object", "int64"] + ["float64" for _ in range(200)]
    columns_types_ibis = ["string", "int32"
                          ] + ["decimal(8, 4)" for _ in range(200)]

    etl_keys = ["t_readcsv", "t_etl"]
    ml_keys = [
        "t_train_test_split", "t_ml", "t_train", "t_inference", "t_dmatrix"
    ]
    ml_score_keys = ["mse", "cod"]
    try:

        import_pandas_into_module_namespace(
            namespace=run_benchmark.__globals__,
            mode=parameters["pandas_mode"],
            ray_tmpdir=parameters["ray_tmpdir"],
            ray_memory=parameters["ray_memory"],
        )

        if not parameters["no_ibis"]:
            ml_data_ibis, etl_times_ibis = etl_ibis(
                filename=parameters["data_file"],
                run_import_queries=False,
                columns_names=columns_names,
                columns_types=columns_types_ibis,
                database_name=parameters["database_name"],
                table_name=parameters["table"],
                omnisci_server_worker=parameters["omnisci_server_worker"],
                delete_old_database=not parameters["dnd"],
                create_new_table=not parameters["dni"],
                ipc_connection=parameters["ipc_connection"],
                validation=parameters["validation"],
                etl_keys=etl_keys,
                import_mode=parameters["import_mode"],
            )

            print_results(results=etl_times_ibis, backend="Ibis", unit="ms")
            etl_times_ibis["Backend"] = "Ibis"

        ml_data, etl_times = etl_pandas(
            filename=parameters["data_file"],
            columns_names=columns_names,
            columns_types=columns_types_pd,
            etl_keys=etl_keys,
        )
        print_results(results=etl_times,
                      backend=parameters["pandas_mode"],
                      unit="ms")
        etl_times["Backend"] = parameters["pandas_mode"]

        if not parameters["no_ml"]:
            ml_scores, ml_times = ml(
                ml_data=ml_data,
                target="target",
                ml_keys=ml_keys,
                ml_score_keys=ml_score_keys,
            )
            print_results(results=ml_times,
                          backend=parameters["pandas_mode"],
                          unit="ms")
            ml_times["Backend"] = parameters["pandas_mode"]
            print_results(results=ml_scores, backend=parameters["pandas_mode"])
            ml_scores["Backend"] = parameters["pandas_mode"]

            if not parameters["no_ibis"]:
                ml_scores_ibis, ml_times_ibis = ml(
                    ml_data=ml_data_ibis,
                    target="target0",
                    ml_keys=ml_keys,
                    ml_score_keys=ml_score_keys,
                )
                print_results(results=ml_times_ibis, backend="Ibis", unit="ms")
                ml_times_ibis["Backend"] = "Ibis"
                print_results(results=ml_scores_ibis, backend="Ibis")
                ml_scores_ibis["Backend"] = "Ibis"

        # Results validation block (comparison of etl_ibis and etl_pandas outputs)
        if parameters["validation"] and not parameters["no_ibis"]:
            print("Validation of ETL query results with ...")
            cols_to_sort = ["var_0", "var_1", "var_2", "var_3", "var_4"]

            ml_data_ibis = ml_data_ibis.rename(columns={"target0": "target"})
            # compare_dataframes doesn't sort pandas dataframes
            ml_data.sort_values(by=cols_to_sort, inplace=True)

            compare_result = compare_dataframes(ibis_dfs=[ml_data_ibis],
                                                pandas_dfs=[ml_data],
                                                sort_cols=cols_to_sort,
                                                drop_cols=[])

        pandas_original()
        compare_all_with_pandas_original()

        return {
            "ETL": [etl_times_ibis, etl_times],
            "ML": [ml_times_ibis, ml_times]
        }
    except Exception:
        traceback.print_exc(file=sys.stdout)
        sys.exit(1)
예제 #6
0
def run_benchmark(parameters):
    parameters["data_file"] = parameters["data_file"].replace("'", "")
    parameters["dfiles_num"] = parameters["dfiles_num"] or 1
    parameters["no_ml"] = parameters["no_ml"] or False

    check_support(parameters, unsupported_params=["gpu_memory"])

    if parameters["validation"]:
        print("WARNING: Validation not yet supported")
    if not parameters["no_ibis"]:
        if parameters["import_mode"] not in ("fsi",):
            raise ValueError("Unsupported import mode: %s" % parameters["import_mode"])

    if not parameters["no_pandas"]:
        import_pandas_into_module_namespace(
            namespace=[run_benchmark.__globals__, etl_pandas.__globals__],
            mode=parameters["pandas_mode"],
            ray_tmpdir=parameters["ray_tmpdir"],
            ray_memory=parameters["ray_memory"],
        )

    acq_schema = ibis.Schema(
        names=(
            "loan_id",
            "orig_channel",
            "seller_name",
            "orig_interest_rate",
            "orig_upb",
            "orig_loan_term",
            "orig_date",
            "first_pay_date",
            "orig_ltv",
            "orig_cltv",
            "num_borrowers",
            "dti",
            "borrower_credit_score",
            "first_home_buyer",
            "loan_purpose",
            "property_type",
            "num_units",
            "occupancy_status",
            "property_state",
            "zip",
            "mortgage_insurance_percent",
            "product_type",
            "coborrow_credit_score",
            "mortgage_insurance_type",
            "relocation_mortgage_indicator",
            "year_quarter_ignore",
        ),
        types=(
            "int64",
            "category",
            "string",
            "float64",
            "int64",
            "int64",
            "timestamp",
            "timestamp",
            "float64",
            "float64",
            "float64",
            "float64",
            "float64",
            "category",
            "category",
            "category",
            "int64",
            "category",
            "category",
            "int64",
            "float64",
            "category",
            "float64",
            "float64",
            "category",
            "int32",
        ),
    )
    perf_schema = ibis.Schema(
        names=(
            "loan_id",
            "monthly_reporting_period",
            "servicer",
            "interest_rate",
            "current_actual_upb",
            "loan_age",
            "remaining_months_to_legal_maturity",
            "adj_remaining_months_to_maturity",
            "maturity_date",
            "msa",
            "current_loan_delinquency_status",
            "mod_flag",
            "zero_balance_code",
            "zero_balance_effective_date",
            "last_paid_installment_date",
            "foreclosed_after",
            "disposition_date",
            "foreclosure_costs",
            "prop_preservation_and_repair_costs",
            "asset_recovery_costs",
            "misc_holding_expenses",
            "holding_taxes",
            "net_sale_proceeds",
            "credit_enhancement_proceeds",
            "repurchase_make_whole_proceeds",
            "other_foreclosure_proceeds",
            "non_interest_bearing_upb",
            "principal_forgiveness_upb",
            "repurchase_make_whole_proceeds_flag",
            "foreclosure_principal_write_off_amount",
            "servicing_activity_indicator",
        ),
        types=(
            "int64",
            "timestamp",
            "category",
            "float64",
            "float64",
            "float64",
            "float64",
            "float64",
            "timestamp",
            "float64",
            "int32",
            "category",
            "category",
            "timestamp",
            "timestamp",
            "timestamp",
            "timestamp",
            "float64",
            "float64",
            "float64",
            "float64",
            "float64",
            "float64",
            "float64",
            "float64",
            "float64",
            "float64",
            "float64",
            "category",
            "float64",
            "category",
        ),
    )

    etl_keys = ["t_readcsv", "t_etl", "t_connect"]
    ml_keys = ["t_dmatrix", "t_ml", "t_train"]
    ml_score_keys = ["mse_mean", "cod_mean", "mse_dev", "cod_dev"]
    N_RUNS = 1

    result = {"ETL": [], "ML": []}
    # gets data directory size in MB
    dataset_size = get_dir_size(parameters["data_file"])

    if not parameters["no_ibis"]:
        df_ibis, mb_ibis, etl_times_ibis = _etl_ibis(parameters, acq_schema, perf_schema, etl_keys)
        print_results(results=etl_times_ibis, backend="Ibis", unit="s")
        etl_times_ibis["Backend"] = "Ibis"
        etl_times_ibis["dataset_size"] = dataset_size
        result["ETL"].append(etl_times_ibis)
        if not parameters["no_ml"]:
            result["ML"].append(_run_ml(df_ibis, N_RUNS, mb_ibis, ml_keys, ml_score_keys, "Ibis"))

    if not parameters["no_pandas"]:
        df_pd, mb_pd, etl_times_pd = _etl_pandas(parameters, acq_schema, perf_schema, etl_keys)
        print_results(results=etl_times_pd, backend=parameters["pandas_mode"], unit="s")
        etl_times_pd["Backend"] = parameters["pandas_mode"]
        etl_times_pd["dataset_size"] = dataset_size
        result["ETL"].append(etl_times_pd)

        if not parameters["no_ml"]:
            result["ML"].append(
                _run_ml(df_pd, N_RUNS, mb_pd, ml_keys, ml_score_keys, parameters["pandas_mode"])
            )

    if parameters["validation"]:
        # recompute frames but leave categories as strings
        idf, _, _ = _etl_ibis(parameters, acq_schema, perf_schema, etl_keys, do_validate=True)
        pdf, _, _ = _etl_pandas(parameters, acq_schema, perf_schema, etl_keys, do_validate=True)
        for df in (pdf, idf):
            for colname, coltype in df.dtypes.items():
                if str(coltype) == "category":
                    df[colname] = (
                        df[colname]
                        .cat.reorder_categories(sorted(df[colname].cat.categories), True)
                        .cat.add_categories("N/A")
                        .fillna("N/A")
                    )
        sortBy = sorted(pdf.dtypes.index)
        pdf.sort_values(by=sortBy, axis=0, inplace=True)
        idf.sort_values(by=sortBy, axis=0, inplace=True)
        pdf = pdf.reset_index().drop("index", axis=1)
        idf = idf.reset_index().drop("index", axis=1)

        compare_dataframes((idf,), (pdf,), [], [])
    # pdf['servicer'] = pdf['servicer'].cat.add_categories('N/A').fillna('N/A')

    #        pdb.set_trace()
    #        # df_pd.drop(dropCols, axis=1, inplace=True)
    #        compare_dataframes(
    #            ibis_dfs=(df_ibis,), pandas_dfs=(df_pd,), sort_cols=sortBy, drop_cols=dropCols
    #        )

    return result
예제 #7
0
def run_benchmark(parameters):

    ignored_parameters = {
        "dfiles_num": parameters["dfiles_num"],
        "gpu_memory": parameters["gpu_memory"],
    }
    warnings.warn(f"Parameters {ignored_parameters} are irnored",
                  RuntimeWarning)

    parameters["data_file"] = parameters["data_file"].replace("'", "")

    # ML specific
    N_RUNS = 50
    TEST_SIZE = 0.1
    RANDOM_STATE = 777

    columns_names = [
        "YEAR0",
        "DATANUM",
        "SERIAL",
        "CBSERIAL",
        "HHWT",
        "CPI99",
        "GQ",
        "QGQ",
        "PERNUM",
        "PERWT",
        "SEX",
        "AGE",
        "EDUC",
        "EDUCD",
        "INCTOT",
        "SEX_HEAD",
        "SEX_MOM",
        "SEX_POP",
        "SEX_SP",
        "SEX_MOM2",
        "SEX_POP2",
        "AGE_HEAD",
        "AGE_MOM",
        "AGE_POP",
        "AGE_SP",
        "AGE_MOM2",
        "AGE_POP2",
        "EDUC_HEAD",
        "EDUC_MOM",
        "EDUC_POP",
        "EDUC_SP",
        "EDUC_MOM2",
        "EDUC_POP2",
        "EDUCD_HEAD",
        "EDUCD_MOM",
        "EDUCD_POP",
        "EDUCD_SP",
        "EDUCD_MOM2",
        "EDUCD_POP2",
        "INCTOT_HEAD",
        "INCTOT_MOM",
        "INCTOT_POP",
        "INCTOT_SP",
        "INCTOT_MOM2",
        "INCTOT_POP2",
    ]
    columns_types = [
        "int64",
        "int64",
        "int64",
        "float64",
        "int64",
        "float64",
        "int64",
        "float64",
        "int64",
        "int64",
        "int64",
        "int64",
        "int64",
        "int64",
        "int64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
    ]
    etl_keys = ["t_readcsv", "t_etl"]
    ml_keys = ["t_train_test_split", "t_ml", "t_train", "t_inference"]

    ml_score_keys = ["mse_mean", "cod_mean", "mse_dev", "cod_dev"]

    try:
        import_pandas_into_module_namespace(
            namespace=run_benchmark.__globals__,
            mode=parameters["pandas_mode"],
            ray_tmpdir=parameters["ray_tmpdir"],
            ray_memory=parameters["ray_memory"],
        )

        etl_times_ibis = None
        ml_times_ibis = None
        etl_times = None
        ml_times = None

        if not parameters["pandas_mode"] and parameters["validation"]:
            print("WARNING: validation working only for '-import_mode pandas'")

        if not parameters["no_ibis"]:
            df_ibis, X_ibis, y_ibis, etl_times_ibis = etl_ibis(
                filename=parameters["data_file"],
                columns_names=columns_names,
                columns_types=columns_types,
                database_name=parameters["database_name"],
                table_name=parameters["table"],
                omnisci_server_worker=parameters["omnisci_server_worker"],
                delete_old_database=not parameters["dnd"],
                create_new_table=not parameters["dni"],
                ipc_connection=parameters["ipc_connection"],
                validation=parameters["validation"],
                etl_keys=etl_keys,
                import_mode=parameters["import_mode"],
            )

            print_results(results=etl_times_ibis, backend="Ibis", unit="ms")
            etl_times_ibis["Backend"] = "Ibis"

            if not parameters["no_ml"]:
                ml_scores_ibis, ml_times_ibis = ml(
                    X=X_ibis,
                    y=y_ibis,
                    random_state=RANDOM_STATE,
                    n_runs=N_RUNS,
                    test_size=TEST_SIZE,
                    optimizer=parameters["optimizer"],
                    ml_keys=ml_keys,
                    ml_score_keys=ml_score_keys,
                )
                print_results(results=ml_times_ibis, backend="Ibis", unit="ms")
                ml_times_ibis["Backend"] = "Ibis"
                print_results(results=ml_scores_ibis, backend="Ibis")
                ml_scores_ibis["Backend"] = "Ibis"

        df, X, y, etl_times = etl_pandas(
            parameters["data_file"],
            columns_names=columns_names,
            columns_types=columns_types,
            etl_keys=etl_keys,
        )

        print_results(results=etl_times,
                      backend=parameters["pandas_mode"],
                      unit="ms")
        etl_times["Backend"] = parameters["pandas_mode"]

        if not parameters["no_ml"]:
            ml_scores, ml_times = ml(
                X=X,
                y=y,
                random_state=RANDOM_STATE,
                n_runs=N_RUNS,
                test_size=TEST_SIZE,
                optimizer=parameters["optimizer"],
                ml_keys=ml_keys,
                ml_score_keys=ml_score_keys,
            )
            print_results(results=ml_times,
                          backend=parameters["pandas_mode"],
                          unit="ms")
            ml_times["Backend"] = parameters["pandas_mode"]
            print_results(results=ml_scores, backend=parameters["pandas_mode"])
            ml_scores["Backend"] = parameters["pandas_mode"]

        if parameters["pandas_mode"] and parameters["validation"]:
            # this should work only for pandas mode
            compare_dataframes(
                ibis_dfs=(X_ibis, y_ibis),
                pandas_dfs=(X, y),
            )

        return {
            "ETL": [etl_times_ibis, etl_times],
            "ML": [ml_times_ibis, ml_times]
        }
    except Exception:
        traceback.print_exc(file=sys.stdout)
        sys.exit(1)
예제 #8
0
def main():
    args = None
    omnisci_server_worker = None
    train_final, test_final = None, None

    parser, args, skip_rows = get_args()

    try:
        if not args.no_ibis:
            sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
            from server import OmnisciServer

            if args.omnisci_executable is None:
                parser.error(
                    "Omnisci executable should be specified with -e/--executable"
                )

            omnisci_server = OmnisciServer(
                omnisci_executable=args.omnisci_executable,
                omnisci_port=args.omnisci_port,
                database_name=args.name,
                omnisci_cwd=args.omnisci_cwd,
                user=args.user,
                password=args.password,
            )
            omnisci_server.launch()

            from server_worker import OmnisciServerWorker

            omnisci_server_worker = OmnisciServerWorker(omnisci_server)

            train_final, test_final, etl_times = etl_all_ibis(
                filename=args.dataset_path,
                database_name=args.name,
                omnisci_server_worker=omnisci_server_worker,
                delete_old_database=not args.dnd,
                create_new_table=not args.dni,
                skip_rows=skip_rows,
                validation=args.val,
            )
            ml_data, etl_times = split_step(train_final, test_final, etl_times)
            print_times(etl_times)

            omnisci_server_worker.terminate()
            omnisci_server_worker = None

            if not args.no_ml:
                print("using ml with dataframes from ibis")
                ml_times = ml(ml_data)
                print_times(ml_times)

        ptrain_final, ptest_final, petl_times = etl_all_pandas(
            args.dataset_path, skip_rows
        )
        ml_data, petl_times = split_step(ptrain_final, ptest_final, petl_times)
        print_times(petl_times)

        if not args.no_ml:
            print("using ml with dataframes from pandas")
            ml_times = ml(ml_data)
            print_times(ml_times)

        if args.val and (not train_final is None) and (not test_final is None):
            print("validating result ...")
            compare_dataframes((train_final, test_final), (ptrain_final, ptest_final))

    finally:
        if omnisci_server_worker:
            omnisci_server_worker.terminate()
예제 #9
0
def run_benchmark(parameters):
    check_support(parameters, unsupported_params=["dfiles_num"])

    parameters["data_file"] = parameters["data_file"].replace("'", "")
    parameters["gpu_memory"] = parameters["gpu_memory"] or 16
    parameters["no_ml"] = parameters["no_ml"] or False

    skip_rows = compute_skip_rows(parameters["gpu_memory"])

    dtypes = OrderedDict(
        [
            ("object_id", "int32"),
            ("mjd", "float32"),
            ("passband", "int32"),
            ("flux", "float32"),
            ("flux_err", "float32"),
            ("detected", "int32"),
        ]
    )

    # load metadata
    columns_names = [
        "object_id",
        "ra",
        "decl",
        "gal_l",
        "gal_b",
        "ddf",
        "hostgal_specz",
        "hostgal_photoz",
        "hostgal_photoz_err",
        "distmod",
        "mwebv",
        "target",
    ]
    meta_dtypes = ["int32"] + ["float32"] * 4 + ["int32"] + ["float32"] * 5 + ["int32"]
    meta_dtypes = OrderedDict(
        [(columns_names[i], meta_dtypes[i]) for i in range(len(meta_dtypes))]
    )

    etl_keys = ["t_readcsv", "t_etl", "t_connect"]
    ml_keys = ["t_train_test_split", "t_dmatrix", "t_training", "t_infer", "t_ml"]

    if not parameters["no_pandas"]:
        import_pandas_into_module_namespace(
            namespace=run_benchmark.__globals__,
            mode=parameters["pandas_mode"],
            ray_tmpdir=parameters["ray_tmpdir"],
            ray_memory=parameters["ray_memory"],
        )

    etl_times_ibis = None
    ml_times_ibis = None
    etl_times = None
    ml_times = None

    if not parameters["no_ibis"]:
        train_final_ibis, test_final_ibis, etl_times_ibis = etl_all_ibis(
            dataset_path=parameters["data_file"],
            database_name=parameters["database_name"],
            omnisci_server_worker=parameters["omnisci_server_worker"],
            delete_old_database=not parameters["dnd"],
            create_new_table=not parameters["dni"],
            ipc_connection=parameters["ipc_connection"],
            skip_rows=skip_rows,
            validation=parameters["validation"],
            dtypes=dtypes,
            meta_dtypes=meta_dtypes,
            etl_keys=etl_keys,
            import_mode=parameters["import_mode"],
            fragments_size=parameters["fragments_size"],
        )

        print_results(results=etl_times_ibis, backend="Ibis", unit="s")
        etl_times_ibis["Backend"] = "Ibis"

        if not parameters["no_ml"]:
            print("using ml with dataframes from Ibis")
            ml_times_ibis = ml(train_final_ibis, test_final_ibis, ml_keys)
            print_results(results=ml_times_ibis, backend="Ibis", unit="s")
            ml_times_ibis["Backend"] = "Ibis"

    if not parameters["no_pandas"]:
        train_final, test_final, etl_times = etl_all_pandas(
            dataset_path=parameters["data_file"],
            skip_rows=skip_rows,
            dtypes=dtypes,
            meta_dtypes=meta_dtypes,
            etl_keys=etl_keys,
            pandas_mode=parameters["pandas_mode"],
        )

        print_results(results=etl_times, backend=parameters["pandas_mode"], unit="s")
        etl_times["Backend"] = parameters["pandas_mode"]

        if not parameters["no_ml"]:
            print("using ml with dataframes from Pandas")
            ml_times = ml(train_final, test_final, ml_keys)
            print_results(results=ml_times, backend=parameters["pandas_mode"], unit="s")
            ml_times["Backend"] = parameters["pandas_mode"]

    if parameters["validation"] and parameters["import_mode"] != "pandas":
        print(
            "WARNING: validation can not be performed, it works only for 'pandas' import mode, '{}' passed".format(
                parameters["import_mode"]
            )
        )

    if parameters["validation"] and parameters["import_mode"] == "pandas":
        compare_dataframes(
            ibis_dfs=[train_final_ibis, test_final_ibis],
            pandas_dfs=[train_final, test_final],
            parallel_execution=True,
        )

    return {"ETL": [etl_times_ibis, etl_times], "ML": [ml_times_ibis, ml_times]}
def run_benchmark(parameters):
    check_support(parameters,
                  unsupported_params=["dfiles_num", "gpu_memory", "optimizer"])

    parameters["data_file"] = parameters["data_file"].replace("'", "")
    parameters["no_ml"] = parameters["no_ml"] or False

    etl_times_ibis = None
    etl_times = None
    ml_times_ibis = None
    ml_times = None

    var_cols = ["var_%s" % i for i in range(200)]
    columns_names = ["ID_code", "target"] + var_cols
    columns_types_pd = ["object", "int64"] + ["float64" for _ in range(200)]
    columns_types_ibis = ["string", "int32"
                          ] + ["decimal(8, 4)" for _ in range(200)]

    etl_keys = ["t_readcsv", "t_etl", "t_connect"]
    ml_keys = [
        "t_train_test_split", "t_ml", "t_train", "t_inference", "t_dmatrix"
    ]
    ml_score_keys = ["mse", "cod"]

    if not parameters["no_pandas"]:
        import_pandas_into_module_namespace(
            namespace=run_benchmark.__globals__,
            mode=parameters["pandas_mode"],
            ray_tmpdir=parameters["ray_tmpdir"],
            ray_memory=parameters["ray_memory"],
        )

    if not parameters["no_ibis"]:
        ml_data_ibis, etl_times_ibis = etl_ibis(
            filename=parameters["data_file"],
            columns_names=columns_names,
            columns_types=columns_types_ibis,
            database_name=parameters["database_name"],
            table_name=parameters["table"],
            omnisci_server_worker=parameters["omnisci_server_worker"],
            delete_old_database=not parameters["dnd"],
            create_new_table=not parameters["dni"],
            ipc_connection=parameters["ipc_connection"],
            validation=parameters["validation"],
            etl_keys=etl_keys,
            import_mode=parameters["import_mode"],
            fragments_size=parameters["fragments_size"],
        )

        print_results(results=etl_times_ibis, backend="Ibis", unit="s")
        etl_times_ibis["Backend"] = "Ibis"

    if not parameters["no_pandas"]:
        ml_data, etl_times = etl_pandas(
            filename=parameters["data_file"],
            columns_names=columns_names,
            columns_types=columns_types_pd,
            etl_keys=etl_keys,
        )
        print_results(results=etl_times,
                      backend=parameters["pandas_mode"],
                      unit="s")
        etl_times["Backend"] = parameters["pandas_mode"]

    if not parameters["no_ml"]:
        if not parameters["no_pandas"]:
            ml_scores, ml_times = ml(
                ml_data=ml_data,
                target="target",
                ml_keys=ml_keys,
                ml_score_keys=ml_score_keys,
            )
            print_results(results=ml_times,
                          backend=parameters["pandas_mode"],
                          unit="s")
            ml_times["Backend"] = parameters["pandas_mode"]
            print_results(results=ml_scores, backend=parameters["pandas_mode"])
            ml_scores["Backend"] = parameters["pandas_mode"]

        if not parameters["no_ibis"]:
            ml_scores_ibis, ml_times_ibis = ml(
                ml_data=ml_data_ibis,
                target="target0",
                ml_keys=ml_keys,
                ml_score_keys=ml_score_keys,
            )
            print_results(results=ml_times_ibis, backend="Ibis", unit="s")
            ml_times_ibis["Backend"] = "Ibis"
            print_results(results=ml_scores_ibis, backend="Ibis")
            ml_scores_ibis["Backend"] = "Ibis"

    # Results validation block (comparison of etl_ibis and etl_pandas outputs)
    if parameters["validation"]:
        print("Validation of ETL query results ...")
        cols_to_sort = ["var_0", "var_1", "var_2", "var_3", "var_4"]

        ml_data_ibis = ml_data_ibis.rename(columns={"target0": "target"})
        # compare_dataframes doesn't sort pandas dataframes
        ml_data.sort_values(by=cols_to_sort, inplace=True)

        compare_dataframes(
            ibis_dfs=[ml_data_ibis],
            pandas_dfs=[ml_data],
            sort_cols=cols_to_sort,
            drop_cols=[],
            parallel_execution=True,
        )

    return {
        "ETL": [etl_times_ibis, etl_times],
        "ML": [ml_times_ibis, ml_times]
    }
예제 #11
0
def run_benchmark(parameters):
    check_support(parameters, unsupported_params=["dfiles_num", "gpu_memory"])

    parameters["data_file"] = parameters["data_file"].replace("'", "")
    parameters["optimizer"] = parameters["optimizer"] or "intel"
    parameters["no_ml"] = parameters["no_ml"] or False

    # ML specific
    N_RUNS = 50
    TEST_SIZE = 0.1
    RANDOM_STATE = 777

    columns_names = [
        "YEAR0",
        "DATANUM",
        "SERIAL",
        "CBSERIAL",
        "HHWT",
        "CPI99",
        "GQ",
        "QGQ",
        "PERNUM",
        "PERWT",
        "SEX",
        "AGE",
        "EDUC",
        "EDUCD",
        "INCTOT",
        "SEX_HEAD",
        "SEX_MOM",
        "SEX_POP",
        "SEX_SP",
        "SEX_MOM2",
        "SEX_POP2",
        "AGE_HEAD",
        "AGE_MOM",
        "AGE_POP",
        "AGE_SP",
        "AGE_MOM2",
        "AGE_POP2",
        "EDUC_HEAD",
        "EDUC_MOM",
        "EDUC_POP",
        "EDUC_SP",
        "EDUC_MOM2",
        "EDUC_POP2",
        "EDUCD_HEAD",
        "EDUCD_MOM",
        "EDUCD_POP",
        "EDUCD_SP",
        "EDUCD_MOM2",
        "EDUCD_POP2",
        "INCTOT_HEAD",
        "INCTOT_MOM",
        "INCTOT_POP",
        "INCTOT_SP",
        "INCTOT_MOM2",
        "INCTOT_POP2",
    ]
    columns_types = [
        "int64",
        "int64",
        "int64",
        "float64",
        "int64",
        "float64",
        "int64",
        "float64",
        "int64",
        "int64",
        "int64",
        "int64",
        "int64",
        "int64",
        "int64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
    ]
    etl_keys = ["t_readcsv", "t_etl", "t_connect"]
    ml_keys = ["t_train_test_split", "t_ml", "t_train", "t_inference"]

    ml_score_keys = ["mse_mean", "cod_mean", "mse_dev", "cod_dev"]

    if not parameters["no_pandas"]:
        import_pandas_into_module_namespace(
            namespace=run_benchmark.__globals__,
            mode=parameters["pandas_mode"],
            ray_tmpdir=parameters["ray_tmpdir"],
            ray_memory=parameters["ray_memory"],
        )

    etl_times_ibis = None
    ml_times_ibis = None
    etl_times = None
    ml_times = None

    if parameters["validation"] and parameters["import_mode"] != "pandas":
        print(
            f"WARNING: validation can not be performed, it works only for 'pandas' \
                import mode, '{parameters['import_mode']}' passed")

    if parameters["data_file"].endswith(".csv"):
        csv_size = getsize(parameters["data_file"])
    else:
        print(
            "WARNING: uncompressed datafile not found, default value for dataset_size is set"
        )
        # deafault csv_size value (unit - MB) obtained by calling getsize
        # function on the ipums_education2income_1970-2010.csv file
        # (default Census benchmark data file)
        csv_size = 2100.0

    if not parameters["no_ibis"]:
        df_ibis, X_ibis, y_ibis, etl_times_ibis = etl_ibis(
            filename=parameters["data_file"],
            columns_names=columns_names,
            columns_types=columns_types,
            database_name=parameters["database_name"],
            table_name=parameters["table"],
            omnisci_server_worker=parameters["omnisci_server_worker"],
            delete_old_database=not parameters["dnd"],
            create_new_table=not parameters["dni"],
            ipc_connection=parameters["ipc_connection"],
            validation=parameters["validation"],
            etl_keys=etl_keys,
            import_mode=parameters["import_mode"],
            fragments_size=parameters["fragments_size"],
        )

        print_results(results=etl_times_ibis, backend="Ibis", unit="s")
        etl_times_ibis["Backend"] = "Ibis"
        etl_times_ibis["dataset_size"] = csv_size

        if not parameters["no_ml"]:
            ml_scores_ibis, ml_times_ibis = ml(
                X=X_ibis,
                y=y_ibis,
                random_state=RANDOM_STATE,
                n_runs=N_RUNS,
                test_size=TEST_SIZE,
                optimizer=parameters["optimizer"],
                ml_keys=ml_keys,
                ml_score_keys=ml_score_keys,
            )
            print_results(results=ml_times_ibis, backend="Ibis", unit="s")
            ml_times_ibis["Backend"] = "Ibis"
            print_results(results=ml_scores_ibis, backend="Ibis")
            ml_scores_ibis["Backend"] = "Ibis"

    if not parameters["no_pandas"]:
        df, X, y, etl_times = etl_pandas(
            parameters["data_file"],
            columns_names=columns_names,
            columns_types=columns_types,
            etl_keys=etl_keys,
            pandas_mode=parameters["pandas_mode"],
        )

        print_results(results=etl_times,
                      backend=parameters["pandas_mode"],
                      unit="s")
        etl_times["Backend"] = parameters["pandas_mode"]
        etl_times["dataset_size"] = csv_size

        if not parameters["no_ml"]:
            ml_scores, ml_times = ml(
                X=X,
                y=y,
                random_state=RANDOM_STATE,
                n_runs=N_RUNS,
                test_size=TEST_SIZE,
                optimizer=parameters["optimizer"],
                ml_keys=ml_keys,
                ml_score_keys=ml_score_keys,
            )
            print_results(results=ml_times,
                          backend=parameters["pandas_mode"],
                          unit="s")
            ml_times["Backend"] = parameters["pandas_mode"]
            print_results(results=ml_scores, backend=parameters["pandas_mode"])
            ml_scores["Backend"] = parameters["pandas_mode"]

    if parameters["validation"] and parameters["import_mode"] == "pandas":
        # this should work only for pandas mode
        compare_dataframes(ibis_dfs=(X_ibis, y_ibis), pandas_dfs=(X, y))

    return {
        "ETL": [etl_times_ibis, etl_times],
        "ML": [ml_times_ibis, ml_times]
    }
예제 #12
0
def main():
    omniscript_path = os.path.dirname(__file__)
    args = None
    omnisci_server_worker = None

    parser = argparse.ArgumentParser(description="Run internal tests from ibis project")
    optional = parser._action_groups.pop()
    required = parser.add_argument_group("required arguments")
    parser._action_groups.append(optional)

    required.add_argument(
        "-f",
        "--file",
        dest="file",
        required=True,
        help="A datafile that should be loaded",
    )
    optional.add_argument("-dnd", action="store_true", help="Do not delete old table.")
    optional.add_argument(
        "-dni",
        action="store_true",
        help="Do not create new table and import any data from CSV files.",
    )
    optional.add_argument(
        "-val",
        action="store_true",
        help="validate queries results (by comparison with Pandas queries results).",
    )
    optional.add_argument(
        "-o",
        "--optimizer",
        choices=["intel", "stock"],
        dest="optimizer",
        default="intel",
        help="Which optimizer is used",
    )
    # MySQL database parameters
    optional.add_argument(
        "-db-server",
        dest="db_server",
        default="localhost",
        help="Host name of MySQL server.",
    )
    optional.add_argument(
        "-db-port",
        dest="db_port",
        default=3306,
        type=int,
        help="Port number of MySQL server.",
    )
    optional.add_argument(
        "-db-user",
        dest="db_user",
        default="",
        help="Username to use to connect to MySQL database. "
        "If user name is specified, script attempts to store results in MySQL "
        "database using other -db-* parameters.",
    )
    optional.add_argument(
        "-db-pass",
        dest="db_pass",
        default="omniscidb",
        help="Password to use to connect to MySQL database.",
    )
    optional.add_argument(
        "-db-name",
        dest="db_name",
        default="omniscidb",
        help="MySQL database to use to store benchmark results.",
    )
    optional.add_argument(
        "-db-table",
        dest="db_table",
        help="Table to use to store results for this benchmark.",
    )
    # Omnisci server parameters
    optional.add_argument(
        "-e",
        "--executable",
        dest="omnisci_executable",
        required=False,
        help="Path to omnisci_server executable.",
    )
    optional.add_argument(
        "-w",
        "--workdir",
        dest="omnisci_cwd",
        help="Path to omnisci working directory. "
        "By default parent directory of executable location is used. "
        "Data directory is used in this location.",
    )
    optional.add_argument(
        "-port",
        "--omnisci_port",
        dest="omnisci_port",
        default=6274,
        type=int,
        help="TCP port number to run omnisci_server on.",
    )
    optional.add_argument(
        "-u",
        "--user",
        dest="user",
        default="admin",
        help="User name to use on omniscidb server.",
    )
    optional.add_argument(
        "-p",
        "--password",
        dest="password",
        default="HyperInteractive",
        help="User password to use on omniscidb server.",
    )
    optional.add_argument(
        "-n",
        "--name",
        dest="name",
        default="census_database",
        help="Database name to use in omniscidb server.",
    )
    optional.add_argument(
        "-t",
        "--table",
        dest="table",
        default="census_table",
        help="Table name name to use in omniscidb server.",
    )

    optional.add_argument(
        "-commit_omnisci",
        dest="commit_omnisci",
        default="1234567890123456789012345678901234567890",
        help="Omnisci commit hash to use for benchmark.",
    )
    optional.add_argument(
        "-commit_ibis",
        dest="commit_ibis",
        default="1234567890123456789012345678901234567890",
        help="Ibis commit hash to use for benchmark.",
    )
    optional.add_argument(
        "-no_ibis",
        action="store_true",
        help="Do not run Ibis benchmark, run only Pandas (or Modin) version",
    )
    optional.add_argument(
        "-pandas_mode",
        choices=["pandas", "modin_on_ray", "modin_on_dask", "modin_on_python"],
        default="pandas",
        help="Specifies which version of Pandas to use: plain Pandas, Modin runing on Ray or on Dask",
    )
    optional.add_argument(
        "-ray_tmpdir",
        default="/tmp",
        help="Location where to keep Ray plasma store. It should have enough space to keep -ray_memory",
    )
    optional.add_argument(
        "-ray_memory",
        default=200 * 1024 * 1024 * 1024,
        help="Size of memory to allocate for Ray plasma store",
    )
    optional.add_argument(
        "-no_ml",
        action="store_true",
        help="Do not run machine learning benchmark, only ETL part",
    )

    args = parser.parse_args()
    args.file = args.file.replace("'", "")

    # ML specific
    N_RUNS = 50
    TRAIN_SIZE = 0.9
    RANDOM_STATE = 777

    columns_names = [
        "YEAR0",
        "DATANUM",
        "SERIAL",
        "CBSERIAL",
        "HHWT",
        "CPI99",
        "GQ",
        "QGQ",
        "PERNUM",
        "PERWT",
        "SEX",
        "AGE",
        "EDUC",
        "EDUCD",
        "INCTOT",
        "SEX_HEAD",
        "SEX_MOM",
        "SEX_POP",
        "SEX_SP",
        "SEX_MOM2",
        "SEX_POP2",
        "AGE_HEAD",
        "AGE_MOM",
        "AGE_POP",
        "AGE_SP",
        "AGE_MOM2",
        "AGE_POP2",
        "EDUC_HEAD",
        "EDUC_MOM",
        "EDUC_POP",
        "EDUC_SP",
        "EDUC_MOM2",
        "EDUC_POP2",
        "EDUCD_HEAD",
        "EDUCD_MOM",
        "EDUCD_POP",
        "EDUCD_SP",
        "EDUCD_MOM2",
        "EDUCD_POP2",
        "INCTOT_HEAD",
        "INCTOT_MOM",
        "INCTOT_POP",
        "INCTOT_SP",
        "INCTOT_MOM2",
        "INCTOT_POP2",
    ]
    columns_types = [
        "int64",
        "int64",
        "int64",
        "float64",
        "int64",
        "float64",
        "int64",
        "float64",
        "int64",
        "int64",
        "int64",
        "int64",
        "int64",
        "int64",
        "int64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
        "float64",
    ]

    db_reporter = None

    try:
        if not args.no_ibis:
            if args.omnisci_executable is None:
                parser.error(
                    "Omnisci executable should be specified with -e/--executable"
                )
            omnisci_server = OmnisciServer(
                omnisci_executable=args.omnisci_executable,
                omnisci_port=args.omnisci_port,
                database_name=args.name,
                user=args.user,
                password=args.password,
            )
            omnisci_server.launch()
            from server_worker import OmnisciServerWorker

            omnisci_server_worker = OmnisciServerWorker(omnisci_server)

            if args.db_user is not "":
                print("Connecting to database")
                db = mysql.connector.connect(
                    host=args.db_server,
                    port=args.db_port,
                    user=args.db_user,
                    passwd=args.db_pass,
                    db=args.db_name,
                )
                db_reporter = DbReport(
                    db,
                    args.db_table,
                    {
                        "QueryName": "VARCHAR(500) NOT NULL",
                        "FirstExecTimeMS": "BIGINT UNSIGNED",
                        "WorstExecTimeMS": "BIGINT UNSIGNED",
                        "BestExecTimeMS": "BIGINT UNSIGNED",
                        "AverageExecTimeMS": "BIGINT UNSIGNED",
                        "TotalTimeMS": "BIGINT UNSIGNED",
                        "IbisCommitHash": "VARCHAR(500) NOT NULL",
                        "BackEnd": "VARCHAR(100) NOT NULL",
                    },
                    {
                        "ScriptName": "census_pandas_ibis.py",
                        "CommitHash": args.commit_omnisci,
                        "IbisCommitHash": args.commit_ibis,
                    },
                )

            df_ibis, X_ibis, y_ibis, etl_times_ibis = etl_ibis(
                filename=args.file,
                columns_names=columns_names,
                columns_types=columns_types,
                database_name=args.name,
                table_name=args.table,
                omnisci_server_worker=omnisci_server_worker,
                delete_old_database=not args.dnd,
                create_new_table=not args.dni,
                validation=args.val,
            )

            omnisci_server_worker.terminate()
            omnisci_server_worker = None

            print_times(etl_times_ibis, "Ibis", db_reporter)

            if not args.no_ml:
                mse_mean, cod_mean, mse_dev, cod_dev, ml_times = ml(
                    X_ibis, y_ibis, RANDOM_STATE, N_RUNS, TRAIN_SIZE, args.optimizer
                )
                print_times(ml_times, "Ibis")
                print("mean MSE ± deviation: {:.9f} ± {:.9f}".format(mse_mean, mse_dev))
                print("mean COD ± deviation: {:.9f} ± {:.9f}".format(cod_mean, cod_dev))

        import_pandas_into_module_namespace(
            main.__globals__, args.pandas_mode, args.ray_tmpdir, args.ray_memory
        )
        df, X, y, etl_times = etl_pandas(
            args.file, columns_names=columns_names, columns_types=columns_types
        )
        print_times(etl_times, args.pandas_mode, db_reporter)

        if not args.no_ml:
            mse_mean, cod_mean, mse_dev, cod_dev, ml_times = ml(
                X, y, RANDOM_STATE, N_RUNS, TRAIN_SIZE, args.optimizer
            )
            print_times(ml_times, args.pandas_mode)
            print("mean MSE ± deviation: {:.9f} ± {:.9f}".format(mse_mean, mse_dev))
            print("mean COD ± deviation: {:.9f} ± {:.9f}".format(cod_mean, cod_dev))

        if args.val:
            compare_dataframes((df_ibis,), (df,))
    except Exception as err:
        print("Failed: ", err)
        sys.exit(1)
    finally:
        if omnisci_server_worker:
            omnisci_server_worker.terminate()
예제 #13
0
def run_benchmark(parameters):
    ignored_parameters = {
        "dfiles_num": parameters["dfiles_num"],
    }
    warnings.warn(f"Parameters {ignored_parameters} are irnored",
                  RuntimeWarning)

    parameters["data_file"] = parameters["data_file"].replace("'", "")
    skip_rows = compute_skip_rows(parameters["gpu_memory"])

    dtypes = OrderedDict([
        ("object_id", "int32"),
        ("mjd", "float32"),
        ("passband", "int32"),
        ("flux", "float32"),
        ("flux_err", "float32"),
        ("detected", "int32"),
    ])

    # load metadata
    columns_names = [
        "object_id",
        "ra",
        "decl",
        "gal_l",
        "gal_b",
        "ddf",
        "hostgal_specz",
        "hostgal_photoz",
        "hostgal_photoz_err",
        "distmod",
        "mwebv",
        "target",
    ]
    meta_dtypes = ["int32"] + ["float32"] * 4 + ["int32"] + ["float32"] * 5 + [
        "int32"
    ]
    meta_dtypes = OrderedDict([(columns_names[i], meta_dtypes[i])
                               for i in range(len(meta_dtypes))])

    etl_keys = ["t_readcsv", "t_etl"]
    ml_keys = [
        "t_train_test_split", "t_dmatrix", "t_training", "t_infer", "t_ml"
    ]
    try:
        import_pandas_into_module_namespace(
            namespace=run_benchmark.__globals__,
            mode=parameters["pandas_mode"],
            ray_tmpdir=parameters["ray_tmpdir"],
            ray_memory=parameters["ray_memory"],
        )

        etl_times_ibis = None
        ml_times_ibis = None
        etl_times = None
        ml_times = None

        if not parameters["no_ibis"]:
            train_final_ibis, test_final_ibis, etl_times_ibis = etl_all_ibis(
                dataset_path=parameters["data_file"],
                database_name=parameters["database_name"],
                omnisci_server_worker=parameters["omnisci_server_worker"],
                delete_old_database=not parameters["dnd"],
                create_new_table=not parameters["dni"],
                ipc_connection=parameters["ipc_connection"],
                skip_rows=skip_rows,
                validation=parameters["validation"],
                dtypes=dtypes,
                meta_dtypes=meta_dtypes,
                etl_keys=etl_keys,
                import_mode=parameters["import_mode"],
            )

            print_results(results=etl_times_ibis, backend="Ibis", unit="ms")
            etl_times_ibis["Backend"] = "Ibis"

            if not parameters["no_ml"]:
                print("using ml with dataframes from Ibis")
                ml_times_ibis = ml(train_final_ibis, test_final_ibis, ml_keys)
                print_results(results=ml_times_ibis, backend="Ibis", unit="ms")
                ml_times_ibis["Backend"] = "Ibis"

        train_final, test_final, etl_times = etl_all_pandas(
            dataset_path=parameters["data_file"],
            skip_rows=skip_rows,
            dtypes=dtypes,
            meta_dtypes=meta_dtypes,
            etl_keys=etl_keys,
        )

        print_results(results=etl_times,
                      backend=parameters["pandas_mode"],
                      unit="ms")
        etl_times["Backend"] = parameters["pandas_mode"]

        if not parameters["no_ml"]:
            print("using ml with dataframes from Pandas")
            ml_times = ml(train_final, test_final, ml_keys)
            print_results(results=ml_times,
                          backend=parameters["pandas_mode"],
                          unit="ms")
            ml_times["Backend"] = parameters["pandas_mode"]

        if parameters["validation"]:
            compare_dataframes(
                ibis_dfs=[train_final_ibis, test_final_ibis],
                pandas_dfs=[train_final, test_final],
            )

        return {
            "ETL": [etl_times_ibis, etl_times],
            "ML": [ml_times_ibis, ml_times]
        }
    except Exception:
        traceback.print_exc(file=sys.stdout)
        sys.exit(1)