def _setup_db(self): DB_CONFIG = self.CONFIG['database'] PROMPT = self.CONFIG['workflow']['prompt'] DBAPI = DB_CONFIG['db_api'] USER = DB_CONFIG['user'] # password_ = input(PROMPT['input']['db_root_password']) password_ = self.db_root_passwd HOST = DB_CONFIG['host'] DB_NAME = DB_CONFIG['db_name'] ARGS = DB_CONFIG['args'] self.cnx = mysql.connector.connect(user=USER, password=password_, host=HOST, use_pure=True) utils.create_database(self.cnx, DB_NAME) utils.use_database(self.cnx, DB_NAME) # Define the MySQL engine using MySQL Connector/Python connect_string = ('{0}://{1}:{2}@{3}/{4}?{5}'.format( DBAPI, USER, password_, HOST, DB_NAME, ARGS)) self.engine = create_engine(connect_string, echo=False) # Create table of cwind station Base.metadata.create_all(self.engine) self.Session = sessionmaker(bind=self.engine) self.session = self.Session()
def render_cases(choice): if choice == 1: try: utils.create_database() utils.create_table() except Exception as e: print(e) print("UNABLE TO CREATE TABLE !!") finally: utils.input_and_save_user() print("Your membership has been created !! ") print("Have a nice day !") utils.display_main_menu() render_cases(int(input())) elif choice == 2: member_uuid = utils.login_member() if member_uuid: (book_name, fine) = utils.check_for_pending_books(member_uuid) if fine is not None: print("You have a pending book ") print("Book Name-> ", book_name) print("Due -> ", fine) utils.display_book_lending_options() handle_book_lend_cases(int(input()), member_uuid) else: print("User not found ! Please try again ") elif choice == 3: system('cls') print("Enter Username: "******"Enter Password: "******"admin" and admin_password == "admin") or utils.is_user_admin( admin_username, admin_password): system('cls') utils.display_admin_options() handle_admin_cases(int(input())) else: print("Invalid Credentials. Try again.") utils.display_main_menu() render_cases(int(input())) elif choice == 4: exit(0) else: print("Invalid Input !!")
def main(): # Create db and tables if it doesn't exist parser = argparse.ArgumentParser() parser.add_argument('--port', default=5555, type=int) parser.add_argument('--host', default='0.0.0.0') parser.add_argument('--debug', action='store_true') args = parser.parse_args() utils.create_database() utils.start_background_tasks(args.host, args.port) # Start webserver app.secret_key = str(settings.secret_key) app.run(host=args.host, port=args.port, debug=args.debug, use_reloader=False)
def main(): # Create db and tables if it doesn't exist parser = argparse.ArgumentParser() parser.add_argument('--port', default=5555, type=int) parser.add_argument('--host', default='0.0.0.0') parser.add_argument('--debug', action='store_true') args = parser.parse_args() utils.create_database() utils.start_background_tasks(args.host, args.port) # Start webserver app.secret_key = str(settings.secret_key) app.run( host=args.host, port=args.port, debug=args.debug, use_reloader=False )
def run(self, app, args): loop = asyncio.get_event_loop() test_config = get_test_config() loop.run_until_complete(create_database(test_config)) run_command = './tests' if args.test_file: run_command += '/' + args.test_file pytest.main(['-x', '-s', run_command]) loop.run_until_complete(drop_database(test_config))
import socket from pathlib import Path from utils import create_database, extract_route, load_data, read_file, build_response from views import index, error_page CUR_DIR = Path(__file__).parent SERVER_HOST = '0.0.0.0' SERVER_PORT = 8080 server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) server_socket.bind((SERVER_HOST, SERVER_PORT)) server_socket.listen() create_database() print( f'Servidor escutando em (ctrl+click): http://{SERVER_HOST}:{SERVER_PORT}') while True: client_connection, client_address = server_socket.accept() request = client_connection.recv(1024).decode() route = extract_route(request) filepath = CUR_DIR / route if filepath.is_file(): response = build_response() + read_file(filepath) elif route == '': response = index(request) else:
def run(self, app, args): loop = asyncio.get_event_loop() loop.run_until_complete(create_database(config))
import imutils import dlib import face_recognition import mouth_detection import datetime import detector_utils import threading import sys # initialize dlib's face detector (HOG-based) and then create the facial landmark predictor detector = dlib.get_frontal_face_detector() predictor_path = './shape_predictor_68_face_landmarks.dat' predictor = dlib.shape_predictor(predictor_path) # create database known_names, known_faces_encoding = utils.create_database('../Images/database/group3') known_names.append('unknown') os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" # construct the argument parse and parse the arguments tf.app.flags.DEFINE_string('test_data_path', '/tmp/ch4_test_images/images/', '') tf.app.flags.DEFINE_string('expected', '0', '') tf.app.flags.DEFINE_string('name', '0', '') FLAGS = tf.app.flags.FLAGS gpu_list = '0' box_padding = 0.12 checkpoint_path = '../extra/model/east_icdar2015_resnet_v1_50_rbox'
help="path to input video file") ap.add_argument("-d", "--database", required=True, help="path to input images file") ap.add_argument("-n", "--name", required=True, help="patient's name") args = vars(ap.parse_args()) # initialize dlib's face detector (HOG-based) and then create the facial landmark predictor detector = dlib.get_frontal_face_detector() predictor_path = './shape_predictor_68_face_landmarks.dat' predictor = dlib.shape_predictor(predictor_path) # create database known_names, known_faces_encoding = utils.create_database(args["database"]) known_names.append('unknown') def thread_video(input): # Dedicated thread for grabbing video frames with VideoGet object. # Main thread shows video frames. video_getter = VideoGet(input).start() nb_total = 0 nb_fr = 0 nb_pill = 0 while True: if video_getter.stopped: video_getter.stop()
import utils import mouth_detection import os # create database known_names, known_faces_encoding = utils.create_database( '../Images/database/group1') # load images to test unknown_names, unknown_faces_encoding = utils.create_database( '../Images/test_face/group1') known_names.append('unknown') index = [ utils.recognize_face(unknown_face_encoding, known_faces_encoding) for unknown_face_encoding in unknown_faces_encoding ] names = [known_names[i] for i in index] utils.compare_result(unknown_names, names) # results : # test only group 1 : Result : 1 error out of 18. Accuracy: 0.94 # test only group 2 : Result : 0 error out of 8. Accuracy: 1 # test group 3 (all photos) : Result : 1 error out of 26. Accuracy: 0.96 filepath = '../Images/test_mouth/' predictor_path = './shape_predictor_68_face_landmarks.dat' paths = utils.load_paths(filepath) image_paths = [os.path.join(filepath, f) for f in paths]