예제 #1
0
def run(filename):
    w_a1 = 0.90291
    w_xy_rt = 0.010809
    w_z1 = 0.357996
    w_z2 = 0.229602
    c_rt1 = 1.330075
    c_rt2 = 1.92522

    model = models.UnrollingHelicesRt2(
        dbscan_features=["sina1", "cosa1", "z1", "z2", "x_rt", "y_rt"],
        dbscan_weight=[w_a1, w_a1, w_z1, w_z2, w_xy_rt, w_xy_rt])
    model.coef_rt1 = c_rt1
    model.coef_rt2 = c_rt2
    model.niter = 150
    path_to_input = os.path.join(path_to_trackml, "test")
    dataset_submission = []
    for event_id, hits in load_dataset(path_to_input, parts=["hits"]):

        labels = model.predict(hits)

        one_submission = create_one_event_submission(event_id, hits, labels)

        dataset_submission.append(one_submission)

    submission = pd.concat(dataset_submission)
    submission.to_csv(filename, index=None)
예제 #2
0
파일: 00.py 프로젝트: ReiMatsuzaki/trackml
 def Fun4BO(w1, w2, w3, niter):
     model.dbscan_weight[0] = w1
     model.dbscan_weight[1] = w1
     model.dbscan_weight[2] = w2
     model.dbscan_weight[3] = w3
     model.niter = int(niter)
     labels = model.predict(hits)
     one_submission = create_one_event_submission(event_id, hits, labels)
     score = score_event(truth, one_submission)
     return score
예제 #3
0
def run(filename):
    model = models.UnrollingHelices(use_outlier=False,
                                    dbscan_features = ["sina1", "cosa1", "z1", "x1", "x2", "x_y", "x_rt", "y_rt"],
                                    dbscan_weight   = [1.0,     1.0,     0.75, 0.5,  0.5,  0.2,   0.2,    0.2])
    path_to_input = os.path.join(path_to_trackml, "train_1")
    for event_id, hits, truth in load_dataset(path_to_input, parts=["hits", "truth"],
                                              skip=0, nevents=1):

        def Fun4BO(w_a1, w_z1 w_x1, w_x2, w_x_y, w_xy_rt, niter):
            model.dbscan_weight[0] = w_a1
            model.dbscan_weight[1] = w_a1
            model.dbscan_weight[2] = w_z1
            model.dbscan_weight[3] = w_x1
            model.dbscan_weight[4] = w_x2
            model.dbscan_weight[5] = w_x_y
            model.dbscan_weight[6] = w_xy_rt
            model.dbscan_weight[7] = w_xy_rt
            model.iter_size_helix = int(niter)
            labels = model.predict(hits)
            one_submission = create_one_event_submission(event_id, hits, labels)
            score = score_event(truth, one_submission)
            return score

        print("Bayesian Optimization")
        opt = BayesianOptimization(Fun4BO,
                                   {"w1": (0.9, 1.2),
                                    "w2": (0.3, 0.8),
                                    "w3": (0.1, 0.6),
                                    "w4": (0.1, 0.6),
                                    "w5": (0.1, 0.6),
                                    "w6": (0.1, 0.6),
                                    "niter": (140, 190)},  #(140, 190)
                                   verbose = True)
        opt.maximize(init_points = 3,
                     n_iter = 20,
                     acq = "ucb",
                     kappa = 2.576)

                # [string]
        labels = opt.res["max"]["max_params"].keys()
        # [dict(string, [float])]
        params = opt.res["all"]["params"]
        len_params = len(params)
    
        data_dic = {}

        for label in labels:
            val = [opt.res["max"]["max_params"][label]]
            for i in range(len_params):
                val.append(params[i][label])
                data_dic[label] = val
        data_dic["value"] = [opt.res["max"]["max_val"]] + opt.res["all"]["values"]
        data_dic["label"] = ["max"] + [str(x) for x in range(len_params)]
        df = pd.DataFrame(data_dic)
        df.to_csv(filename, label=None)
예제 #4
0
 def Fun4BO(w_a1, w_z1, w_z2, w_xy_rt, niter):
     model.dbscan_weight[0] = w_a1
     model.dbscan_weight[1] = w_a1
     model.dbscan_weight[2] = w_z1
     model.dbscan_weight[3] = w_z2
     model.dbscan_weight[4] = w_xy_rt
     model.dbscan_weight[5] = w_xy_rt
     model.niter = int(niter)
     labels = model.predict(hits)
     one_submission = create_one_event_submission(event_id, hits, labels)
     score = score_event(truth, one_submission)
     return score
예제 #5
0
def run(model, test_or_train, path_to_out, nevents=None):
    if(test_or_train not in ["test", "train_1"]):
        sys.stderr.write("Error. test_or_train must be \"test\" or \"train_1\"\n")
        sys.exit()
    if(test_or_train=="test" and (nevents is not None)):
        sys.strerr.write("Error")
        sys.exit()

    path_to_input = os.path.join(path_to_trackml, test_or_train)

    os.makedirs(path_to_out, exist_ok=True)
    print("calculation begin : {0}".format(datetime.datetime.today()))

    dataset_submission = []    
    if(test_or_train == "test"):
        for event_id, hits in load_dataset(path_to_input, parts=["hits"]):
            sys.stderr.write("processing event_id : {0}".format(event_id))
            labels = model.predict(hits)

            one_submission = create_one_event_submission(event_id, hits, labels)
            dataset_submission.append(one_submission)
    else:
        dataset_score = []
        for event_id, hits, truth in load_dataset(path_to_input, parts=["hits", "truth"],
                                                  skip=0, nevents=nevents):
            sys.stderr.write("processing event_id : {0}".format(event_id))
            labels = model.predict(hits)

            one_submission = create_one_event_submission(event_id, hits, labels)
            dataset_submission.append(one_submission)
            
            score = score_event(truth, one_submission)
            dataset_score.append(score)

            print("Score for event %d:%.8f" % (event_id, score))
        print("Mean Score : %.8f" % (np.sum(dataset_score)/len(dataset_score)))
        
    submission = pd.concat(dataset_submission)
    submission.to_csv(os.path.join(path_to_out, "submission.csv"), index=None)
    print("calculation end : {0}".format(datetime.datetime.today()))
예제 #6
0
파일: 11.py 프로젝트: ReiMatsuzaki/trackml
 def Fun4BO(w_a1, w_z1, w_z2, w_xy_rt):
     model.dbscan_weight[0] = w_a1
     model.dbscan_weight[1] = w_a1
     model.dbscan_weight[2] = w_z1
     model.dbscan_weight[3] = w_z2
     model.dbscan_weight[4] = w_xy_rt
     model.dbscan_weight[5] = w_xy_rt
     score_list = []
     for (hits, truth) in zip(hits_list, truth_list):
         labels = model.predict(hits)
         one_submission = create_one_event_submission(event_id, hits, labels)
         score = score_event(truth, one_submission)
         score_list.append(score)
     return np.sum(score_list)/len(score_list)
예제 #7
0
파일: 07.py 프로젝트: ReiMatsuzaki/trackml
 def Fun4BO(w_a1, w_z1, w_z2, w_xy, w_xy_rt, c_r1, c_r2):
     model.dbscan_weight[0] = w_a1
     model.dbscan_weight[1] = w_a1
     model.dbscan_weight[2] = w_z1
     model.dbscan_weight[3] = w_z2
     model.dbscan_weight[4] = w_xy
     model.dbscan_weight[5] = w_xy_rt
     model.dbscan_weight[6] = w_xy_rt
     model.coef_rt1  = c_r1
     model.coef_rt2  = c_r2
     labels = model.predict(hits)
     one_submission = create_one_event_submission(event_id, hits, labels)
     score = score_event(truth, one_submission)
     return score
예제 #8
0
 def Fun4BO(w_a1, w_z1, w_z2, w_xy_rt, c_rt1, c_rt2, eps0, step_eps):
     model.dbscan_weight[0] = w_a1
     model.dbscan_weight[1] = w_a1
     model.dbscan_weight[2] = w_z1
     model.dbscan_weight[3] = w_z2
     model.dbscan_weight[4] = w_xy_rt
     model.dbscan_weight[5] = w_xy_rt
     model.coef_rt1 = c_rt1
     model.coef_rt2 = c_rt2
     model.eps0 = eps0
     model.step_eps = step_eps
     labels = model.predict(hits)
     one_submission = create_one_event_submission(
         event_id, hits, labels)
     score = score_event(truth, one_submission)
     return score
예제 #9
0
    def fit(dfh, y=None):
        dfh["s1"] = dfh.hit_id
        dfh["N1"] = 1
        dfh['r'] = np.sqrt(dfh['x'].values**2 + dfh['y'].values**2 +
                           dfh['z'].values**2)
        dfh['rt'] = np.sqrt(dfh['x'].values**2 + dfh['y'].values**2)
        dfh['a0'] = np.arctan2(dfh['y'].values, dfh['x'].values)

        mm = 1
        for ii in tqdm(range(self.niter), total=self.niter):
            # unroll helices
            mm = mm * (-1)
            dfh['z1'] = (dfh['z'].values + dj) / dfh['rt'].values
            dfh['z2'] = (dfh['z'].values + dj) / dfh['r'].values
            dfh["a1"] = dfh.a0 + mm * (self.coef_rt * dfh.rt.values
                                       ) / 1000.0 * (ii / 2) / 180.0 * np.pi

            dfh["sina1"] = np.sin(dfh["a1"].values)
            dfh["cosa1"] = np.cos(dfh["a1"].values)

            # scaling
            ss = StandardScaler()
            dfs = ss.fit_transform(dfh[self.features].values)
            dfs[:, :] = dfs[:, :] * self.weight[np.newaxis, :]

            # clustering
            res = DBSCAN(eps=self.eps0,
                         min_samples=1,
                         metric='euclidean',
                         n_jobs=4).fit(dfs).labels_
            dfh["s2"] = res
            dfh['N2'] = dfh.groupby('s2')['s2'].transform('count')
            maxs1 = np.max(dfh.s1)
            dfh.s1 = np.where((dfh.N2 > dfh.N1) & (dfh.N2 < 20),
                              dfh.s2 + maxs1, dfh.s1)
            dfh['s1'] = dfh['s1'].astype('int64')
            dfh['N1'] = dfh.groupby('s1')['s1'].transform('count')

        labels = dfh["s1"]
        submission = create_one_event_submission(0, dfh, labels)
        for i in range(self.nextend):
            submission = extend(submission, dfh)

        self.submission = submission
        return self
예제 #10
0
if __name__ == "__main__":
    sys.path.append(path_to_trackmllib)
    from trackml.dataset import load_dataset
    from trackml.score import score_event

    os.makedirs(path_to_out, exist_ok=True)
    f_log = open(path_to_log, "w")
    f_log.write("calculation begin\n")
    f_log.write(str(datetime.datetime.today()) + "\n")

    dataset_submission = []
    dataset_score = []
    for event_id, hits, cells, particles, truth in load_dataset(
            path_to_input, skip=0, nevents=nevents):
        labels = model.predict(hits)

        one_submission = create_one_event_submission(event_id, hits, labels)
        dataset_submission.append(one_submission)

        score = score_event(truth, one_submission)
        dataset_score.append(score)

        f_log.write("Score for event %d:%.8f\n" % (event_id, score))

    submission = pd.concat(dataset_submission)
    submission.to_csv(os.path.join(path_to_out, "submission.csv"), index=None)
    f_log.write("Mean Score : %.8f\n" %
                (np.sum(dataset_score) / len(dataset_score)))
    f_log.write("calculation end\n")
    f_log.write(str(datetime.datetime.today()))